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Abstract

This thesis investigates the economic viability of flexible e-methanol production in response to volatile
electricity markets. The increasing penetration of renewable energy sources has led to significant
electricity price volatility, creating opportunities for hydrogen production from electrolysis and
conversion into various chemicals that can adapt their operational schedules to capitalize on favorable
market conditions. E-methanol synthesis is a unique opportunity in power-to-chemicals pathways by
simultaneously utilizing renewable electricity and captured CO2 as feedstock.

However, methanol production involves high-temperature catalytic reactors with operational con-
straints that traditionally favor continuous operation. This study aims to quantify the economic
benefits of flexible operation while accounting for technical challenges and operational costs of
variable production.

This work integrates (i) a steady‑state process model and a dynamic reactor model on Aspen
Plus/Aspen Dynamics for verifying realistic flexibility limits (ramp rates, stabilization times, mini-
mum load) with (ii) an optimization model based on mixed‑integer linear programming (MILP) that
embeds those constraints to optimize yearly operating schedules against historical Swedish electric-
ity prices (2019–2023). This framework combines physical feasibility to economic performance,
enabling a comprehensive assessment of flexible operation strategies.

Results demonstrate that flexible operation achieves production cost changes ranging from 0 to 441
EUR/tonne depending on market volatility, representing cost reductions of up to 24.5 % compared to
constant-capacity operation. The economic benefits correlate strongly with electricity price volatility:
stable market years (2019–2020) show modest cost changes of 0.2–8.6 EUR/tonne, while volatile
years (2021–2023) enable substantial savings of 103.6–441 EUR/tonne. Optimal strategies adapt
operational patterns to market conditions, operating at full capacity 47.5–99.0 % of the time. The
analysis establishes that operational flexibility becomes economically essential during periods of
high electricity price volatility, providing a cost mitigation strategy for industrial chemical production
in increasingly volatile energy markets. Importantly, future power-to-X (PtX) system designs should
treat flexibility characteristics (ramp rate, minimum load, response latency) as first-order design
variables rather than downstream operational adjustments.
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Sammanfattning

Denna avhandling undersöker den ekonomiska potentialen hos flexibel e-metanolproduktion i en
volatil elmarknad. Den växande andelen förnybar el har lett till kraftigt varierande elpriser, vilket
skapar möjligheter för processer som kan anpassa driften efter marknadsförhållandena. E-metanol
erbjuder en särskilt intressant väg inom power-to-chemicals genom att kombinera förnybar el med
infångad CO2 som råvara.

Metanolproduktion bygger dock på högtemperatur-katalytiska reaktorer med tekniska begränsningar
som normalt gynnar kontinuerlig drift. Studien syftar därför till att kvantifiera de ekonomiska
fördelarna med flexibel drift, samtidigt som de tekniska utmaningarna och de driftmässiga kostnaderna
vid varierande produktion beaktas.

Metodiken kombinerar en stationär processmodell med en dynamisk reaktormodell i Aspen
Plus/Aspen Dynamics för att verifiera realistiska flexibilitetsgränser (rampningshastigheter, sta-
biliseringstider, minimallast). Dessa begränsningar integreras i en optimeringsmodell baserad på
blandad heltalslinjärprogrammering (mixed-integer linear programming, MILP) som optimerar
driftscheman baserat på historiska svenska elpriser (2019–2023). Detta ramverk kopplar samman
fysisk genomförbarhet med ekonomisk prestanda, vilket möjliggör en omfattande utvärdering av
flexibla driftstrategier.

Resultaten visar att flexibel drift uppnår produktionskostnadsförändringar från 0 till 441 EUR/ton
beroende på marknadsvolatilitet, vilket motsvarar kostnadsminskningar på upp till 24,5 % jämfört
med konstant kapacitet. De ekonomiska fördelarna korrelerar starkt med elprisvolatilitet: stabila mark-
nadsår (2019–2020) visar blygsamma kostnadsförändringar på 0,2–8,6 EUR/ton, medan volatila år
(2021–2023) möjliggör betydande besparingar på 103,6–441 EUR/ton. Optimala strategier anpassar
driftmönster efter marknadsförhållanden, med drift vid full kapacitet 47,5–99,0 % av tiden. Analysen
fastställer att driftflexibilitet blir ekonomiskt avgörande under perioder med hög elprisvolatilitet och
utgör en kostnadsmildrande strategi för industriell kemikalieproduktion i allt mer volatila energimark-
nader. Framtida power-to-X-system bör därför behandla flexibilitetsegenskaper (rampningshastighet,
minimallast, responstid) som primära designvariabler snarare än efterhandsanpassningar i driften.
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AACE Association for the Advancement of Cost Engineering
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ASME American Society of Mechanical Engineers
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LPMeOH Liquid Phase Methanol
MILP mixed-integer linear programming
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OPEX operating expenditure
PDE partial differential equation
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1 Introduction

This chapter introduces the global energy transition context, the economic implications of electricity
market dynamics, and the definition and importance of power-to-X (PtX) technologies. It establishes
the motivation for studying flexible methanol production as a case study for demand-side flexibility
in renewable energy systems, identifying the key technical and economic challenges that drive this
research.

The Energy Storage Challenge and Power-to-X Solutions

The global transition toward renewable energy sources has fundamentally altered the electricity
generation landscape. In 2023, a record 473 GW of renewable capacity was added globally, expanding
the total stock by 13.9 % [1]. This brought the total share of renewables to 43 % of the world’s
installed power capacity [2]. By 2024, this trend continued, with total renewable capacity reaching
approximately 4.4 TW [3]. Solar and wind power have been the primary drivers of this expansion,
accounting for 98 % of all new renewable capacity in 2023 [1].

However, the inherent variability of these sources creates significant challenges for grid stability.
Unlike dispatchable conventional power plants, renewable generation is subject to weather-dependent
fluctuations, leading to unprecedented electricity price volatility [4, 5]. Electricity market volatility
is further amplified by geopolitical risks beyond renewable variability itself [4, 6]. The 2022
energy crisis exemplified this, as the Russian full-scale invasion of Ukraine triggered unprecedented
price volatility across European electricity markets [4]. Such geopolitical disruptions alter market
fundamentals through supply chain disruptions, fuel commodity shocks, and emergency policy
interventions, creating price dynamics that are inherently difficult to forecast using conventional
market models [7].

This combined technical and geopolitical volatility creates an economic imperative for solutions
that can balance supply and demand while managing price risk. Traditional grid balancing has
relied on supply-side flexibility, but achieving the scale of renewable integration targeted in the
European Green Deal [8] and national climate plans is widely expected to require complementary
demand-side flexibility and long-duration energy storage [9]. Chemical energy carriers, produced
via PtX pathways have emerged as a promising solution for this challenge, enabling both long-term
storage and the coupling of the electricity sector with industries like shipping, aviation, and chemical
manufacturing [10].
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CHAPTER 1. INTRODUCTION

Burre et al. [10] define PtX processes as “processes with the goal to exploit the environmental and
economic potential of renewable electricity”. The economic viability of PtX is fundamentally linked
to electricity costs; for PtX routes such as renewable methanol, electricity can account for up to 70 %
of total production costs [11]. Increasing deployment of renewables may create opportunities for
flexible industrial processes to reduce electricity costs by operating when prices are low.

Power-to-X Pathways

PtX processes are by nature hydrogen-centric: electricity is converted to H2 via water electrolysis.
However, direct hydrogen storage remains challenging due to its low volumetric energy density,
requiring either high-pressure compression, cryogenic liquefaction, or conversion to chemical carriers.
Consequently, H2 is often converted into other chemicals—such as ammonia, methane, or methanol—
that offer more practical storage and transport characteristics. Among the leading PtX pathways,
ammonia (NH3), synthetic methane (CH4), and methanol (CH3OH) each offer distinct technical and
economic characteristics that influence their suitability for flexible operation and market integration.

Ammonia synthesis is a mature technology based on the Haber–Bosch process (N2 + 3 H2 −−−→
2 NH3), with a global production capacity of approximately 235 Mt in 2023 [12]. The push for
decarbonization has created a substantial pipeline for low-emission ammonia, with 490 production
plants in development by end of 2024 representing 438 Mt/y of low-emission and transitional
ammonia capacity [13]. Ammonia has excellent energy density and hydrogen content [14], however,
the decomposition (“cracking”) back to H2 is highly endothermic and imposes a significant efficiency
penalty [15].

Synthetic methane production via the Sabatier process (CO2 + 4 H2 −−−→ CH4 + 2 H2O) is among
the most technologically mature CO2-utilizing PtX pathways, typically operated at 50–100 bar
and 200–400 °C, with advanced plants reporting process efficiencies around 72 % [16]. A key
advantage is infrastructure compatibility, leveraging the existing natural gas network, which represents
approximately 3 trillion USD in asset value as of 2024 [17]. However, when considered as a hydrogen
carrier, its storage and transport often require cryogenic liquefaction, and downstream H2 recovery
via reforming or pyrolysis is energy-intensive [18], similar to ammonia.

E-methanol synthesis via catalytic hydrogenation of captured CO2 (CO2 + 3 H2 −−−→ CH3OH +
H2O) represents a promising pathway for renewable energy storage, with the global methanol market
valued at 32.7 billion USD in 2024 [19].

This work focuses on power-to-methanol (PtM) because methanol offers unique advantages both as
a PtX chemical product and as a hydrogen carrier. As a PtX process, methanol synthesis operates
at moderate conditions (210–270 °C and 50–80 bar) that facilitate more responsive load changes.
As a hydrogen carrier, methanol is liquid at ambient conditions, eliminating the pressurization
or cryogenic storage requirements of ammonia and methane. More importantly, H2 recovery via
methanol steam reforming occurs under relatively mild conditions (200–350 °C), compared to the
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CHAPTER 1. INTRODUCTION

significantly more demanding requirements of ammonia cracking (500–650 °C) or methane steam
reforming (700–950 °C, 20–30 bar) [20]. These operational advantages make methanol particularly
well-suited for price-responsive, dynamically operated PtX plants.

The Flexibility Challenge in PtX

In general, industrial processes can show a wide spectrum of flexibility. Electrochemical processes
like water electrolysis are exceptionally flexible; modern electrolyzers such as alkaline water electrol-
ysis (AWE) and proton exchange membrane (PEM) can operate across a load range of 0–100 % of
nominal capacity and achieve ramp rates as high as 10 % of nominal capacity per second [21].

In contrast, thermochemical processes involving heterogeneous catalysis and significant thermal
mass are typically less flexible—conventionally, these processes operate at steady-state full load, with
the alternative being turndown to a load above the minimum load (20–40 %) rather than continuous
or dynamic modulation. Recent studies reveal that the flexibility of methanol synthesis reactors is
defined by thermal management challenges, catalyst performance limits, and process integration
complexities [22–25]. This effectively makes the methanol synthesis process the flexibility bottleneck
in the entire PtM chain, representing the main flexibility challenge.
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2 Background

This chapter reviews the current state of research on PtM systems and identifies the specific technical
gaps that motivate this work. The focus is on reactor-level dynamics and process integration challenges
that ultimately determine the feasibility of flexible e-methanol production under variable renewable
energy input.

2.1 Literature Review

Reactor Dynamics and Control

Recent advances in methanol reactor modeling have established the technical foundation for under-
standing flexibility constraints. Rinaldi and Visconti [26] demonstrated that multi-tubular reactors
can transition between different operating modes and reach steady-state conditions within a few hours,
proposing operational strategies where CO2 utilization varies with renewable hydrogen availability.
Nguyen [27] quantified achievable performance under 50 %/h ramp rates with 18.8 % minimum load,
while Mbatha et al. [22] showed that appropriately designed reactors can achieve ramp rates up to
16.7 %/min and operate down to 20 % load.

The thermal management challenge represents a critical constraint in reactor flexibility. Rinaldi and
Visconti [26] identified that reactor design significantly affects thermal gradients during transient
operation, demonstrating that reducing tube numbers rather than tube length provides better thermal
management. Montebelli et al. [28] showed that advanced heat transfer designs using monolith and
foam catalysts can improve thermal response under dynamic conditions.

Control Strategy

Control system development has focused on managing the complex interactions during load changes.
Nguyen et al. [23] introduced cascade proportional-integral-derivative (PID) controllers and lag
filters for flow ramping, while Cui et al. [24] developed hybrid approaches combining detailed
simulation with surrogate models for computational efficiency during dynamic optimization.
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CHAPTER 2. BACKGROUND

Process Integration and System-Level Constraints

Sivert [29] and Mucci et al. [30] identified methanol reactors as the primary bottleneck in flexible op-
eration, confirming that within the methanol synthesis process, system-wide flexibility is constrained
by the reactor rather than other unit operations such as compressors, heat exchangers, or separation
equipment. This finding justifies focusing research efforts on reactor-level constraints as the key
limitation for flexible methanol production.

Despite significant progress in dynamic modeling and control, several fundamental gaps limit the
practical implementation of flexible e-methanol systems. Most existing studies examine either
technical flexibility or economic optimization in isolation. Dynamic modeling studies [22, 26,
27] establish technical capabilities but rarely extend to economic evaluation under realistic market
conditions. Conversely, economic optimization studies typically assume simplified constraints that
may not reflect achievable reactor performance. This disconnect prevents quantitative assessment of
the trade-offs between technical feasibility and economic viability.

Many flexibility studies implement idealized ramping profiles that may not reflect industrial-scale
operational realities. Critical factors such as catalyst thermal stress limits, product quality maintenance
during transients, and the interaction between multiple process units during load changes are often
oversimplified, creating uncertainty about the practical achievability of predicted flexibility benefits.
These simplifications represent typical challenges across all process modeling studies and remain
present in this work as well.

2.2 Thesis Scope and Objectives

The identified research gaps motivate the development of an integrated modeling and optimization
framework that bridges technical feasibility with economic viability. This thesis addresses these gaps
through four specific objectives:

1. Establish realistic operational boundaries through detailed steady-state and dynamic
process modeling in Aspen Plus and Aspen Plus Dynamics, quantifying achievable ramp-
ing rates, minimum load requirements, and stabilization times that reflect industrial-scale
operational realities.

2. Develop integrated dynamic-economic models that combine detailed process constraints
with mixed-integer linear programming optimization to evaluate flexible operation strategies
under realistic electricity market conditions.

3. Conduct a comprehensive multi-year economic assessment using historical electricity
price data to quantify the economic benefits of flexible operation and identify key sensitivity
parameters affecting long-term profitability.

4. Quantify design and operational trade-offs between capital costs, operational flexibility,
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CHAPTER 2. BACKGROUND

and economic performance to provide decision-making guidance for industrial implementa-
tion.

By integrating detailed process modeling with comprehensive economic optimization, this work
provides a comprehensive framework for evaluating the practical potential of flexible e-methanol
production as a pathway for renewable energy integration and sustainable chemical synthesis. The
methodology, described in the following chapter, combines engineering rigor with economic realism
to ensure that findings reflect achievable performance rather than theoretical ideals.
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3 Methods

The methodology follows a staged approach, as illustrated in figure 3.1. First, a complete e-methanol
synthesis process is modeled at design capacity in Aspen Plus V14, based on the hydrogenation
of pure CO2 with H2 produced via water electrolysis. The catalytic reactor model is then exported
to Aspen Plus Dynamics to evaluate its transient response to time-varying inlet flowrates. This
dynamic simulation supports the validation of ramping behavior and the assessment of reactor
flexibility. In the final stage, equipment sizing, capital costs, and operating expenses obtained from
the simulations are incorporated into a mixed-integer linear programming (MILP) optimization.
Additional techno-economic inputs, including electrolyzer costs, captured CO2 pricing, and historical
hourly electricity prices, are also integrated. The optimization focuses on key constraints in flexible
operation, particularly those associated with the reactor, and compares the economic and operational
performance of dynamic versus steady-state operation.

Steady-state
process modeling

Dynamic reactor
modeling

MILP
optimization

Electrolyzer
costing

Figure 3.1: Comprehensive methodology overview for e-methanol plant optimization study.

3.1 Steady-State Process Modeling

A complete steady-state process model of methanol synthesis is developed in Aspen Plus V14. The
purpose of the model is to evaluate key metrics for unit operations that serve as a basis for sizing
and costing of the equipment in section 3.3.3 and to configure a reactor model to test and analyze in
Aspen Plus Dynamics in section 3.2. This section outlines the main assumptions, process variables,
and specifications applied in the model.
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CHAPTER 3. METHODS

3.1.1 Thermodynamic and Kinetic Models

The selection of accurate numerical models for the chemical systems is a foundational step to building
a robust process model. Detailed information on the selection of the thermodynamic model as well
as the kinetics implementation procedure are presented in this section.

Thermodynamics

The thermodynamic model selection is critical for accurate prediction of phase equilibria, enthalpies,
and fugacities of material streams present in the process. equations of state (EOSs) relate pressure,
temperature, and composition to other thermodynamic properties and are particularly important for
high-pressure gas-phase calculations. Activity coefficient models, on the other hand, are used to
describe liquid-phase non-idealities and are more suitable for low-pressure vapor-liquid equilibrium
calculations.

In the literature, the Predictive Soave-Redlich-Kwong (PSRK) and Non-Random Two-Liquid (NRTL)
pair is commonly adopted for high- and low-pressure sections respectively [24, 27]. However, this
work adopts Peng-Robinson (PR) EOS and NRTL pair for better convergence and to utilize pre-
calibrated binary interaction parameters. This choice is supported by consultation with AspenTech
customer support and is more consistent with Carlson’s guideline for selecting thermophysical
property models [31]. The PR EOS is used for all gas-phase unit operations, including compressors,
heat exchangers, the reactor, and the high-pressure flash vessel. The NRTL model is applied in the
low-pressure flash vessel and the distillation column to better capture non-idealities in the liquid
phase.

Reaction Kinetics

Three chemical reactions, given in equations 3.1 to 3.3, are considered for methanol synthesis.
Only two independent rate laws are implemented, as the third reaction can be expressed as a linear
combination of the other two. The CO2 hydrogenation reaction (equation 3.1) and the reverse
water–gas shift reaction (equation 3.3) are modeled using kinetic parameters reported by Cui et al.
[24].

CO2 + 3 H2 −−−⇀↽−−− CH3OH + H2O (3.1)
CO + 2 H2 −−−⇀↽−−− CH3OH (3.2)
CO2 + H2 −−−⇀↽−−− CO + H2O (3.3)

Vanden Bussche and Froment’s kinetic model is employed [32], as it shows the best accuracy in the
operating range of modern methanol synthesis reactors [33]. Since Aspen Plus only accepts custom
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CHAPTER 3. METHODS

kinetic models in exponential form, an algebraic rearrangement of the original model is required.
The rate expressions for methanol synthesis and the reverse water–gas shift in this form are given in
equations 3.4 and 3.5 [24].

𝑟CH3OH =
𝑘1𝑃CO2

𝑃H2
(1 − 1

𝐾𝑒𝑞1

𝑃H2O𝑃CH3OH

𝑃3
H2𝑃CO2

)

(1 + 𝑘2
𝑃H2O
𝑃H2

+ 𝑘3𝑃0.5
H2

+ 𝑘4𝑃H2O)
3 (3.4)

𝑟RWGS =
𝑘5𝑃CO2

(1 − 𝐾𝑒𝑞2
𝑃H2O𝑃CO
𝑃CO2𝑃H2

)

(1 + 𝑘2
𝑃H2O
𝑃H2

+ 𝑘3𝑃0.5
H2

+ 𝑘4𝑃H2O)
(3.5)

where: 𝑟CH3OH, 𝑟RWGS = reaction rates for methanol synthesis and reverse water–gas shift
𝑃𝑖 = partial pressure of component 𝑖
𝑘1, … , 𝑘5 = kinetic rate constants
𝐾𝑒𝑞1, 𝐾𝑒𝑞2 = equilibrium constants for methanol synthesis and RWGS reactions

The kinetic parameters and equilibrium constants are given in equations 3.6 to 3.8 and table 3.1 [32].

𝑘𝑖 = 𝐴𝑖 exp 𝐵𝑖
𝑅𝑇 (3.6)

log10 𝐾𝑒𝑞1 = 3066
𝑇 − 10.592 (3.7)

log10
1

𝐾𝑒𝑞2
= −2073

𝑇 + 2.029 (3.8)

where: 𝐴𝑖, 𝐵𝑖 = pre-exponential factor and activation energy for rate constant 𝑘𝑖
𝑅 = universal gas constant
𝑇 = temperature

The kinetic parameters obtained after mapping them to Langmuir-Hinshelwood-Hougen-Watson
(LHHW) rate expression are presented in table 3.2. The pre-exponential factors and temperature
exponents are set as 1 and 0, respectively, since the expression of the driving force term includes
the pre-exponential term as well as the temperature dependency in the rearranged equation. The
adsorption terms reported by Vanden Bussche and Froment [32] are used without any conversion.

Model Validation

The thermodynamic and kinetic models are validated by comparing the simulation results with
reference data reported by Vanden Bussche and Froment [32]. An RPlug reactor block is set up to
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CHAPTER 3. METHODS

Table 3.1: Kinetic parameters in Vanden Bussche and Froment model [𝐵 in J/mol] [32].

Parameter Constant Value

𝑘1 𝐴1 1.97
𝐵1 40 000

𝑘2 𝐴2 3 453.38
𝐵2 –

𝑘3 𝐴3 0.499
𝐵3 17 197

𝐾CO2
𝐴4 6.62 × 10−11

𝐵4 124 119
𝐾H2O 𝐴5 1.22 × 1010

𝐵5 −98 084

Table 3.2: Coefficients for driving force constants in the kinetic model.

Reaction Parameter CO2 Hydrogenation RWGS

Forward 𝐴 −29.87 4.804
𝐵 4 811.2 −11 797.5

Backward 𝐴 17.55 0.131
𝐵 −2 249.8 −7 023.5

match the bench-scale reactor conditions reported in [32], with specifications listed in table 3.3. The
original plot in [32] is digitized using WebPlotDigitizer [34] to extract the data points for comparison.
The validation results are presented in figure 3.2, showing good agreement between the model
predictions and experimental data across all major components.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

4

5
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Reactor Length [m]

M
ol

e
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CH3OH Model CH3OH Ref.
CO Model CO Ref.

Figure 3.2: Kinetic model validation results.
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Table 3.3: Validation reactor specifications [32].

Parameter Value Unit

Catalyst properties
Density 1 775 kg/m³
Porosity 0.5 –
Pellet diameter 0.5 mm

Reactor geometry
Diameter 0.016 m
Length 0.15 m

Operating conditions
Temperature 493.2 K
Pressure 50 bar

Feed composition
CO 4.00 mol%
H2O 0.00 mol%
CH3OH 0.00 mol%
H2 82.00 mol%
CO2 3.00 mol%
Ar 11.0 mol%

3.1.2 Process Description

With the thermophysical property model selected and kinetic reaction laws implemented, a complete
methanol synthesis process is designed in Aspen Plus. The process capacity is set to CO2 and H2
flowrates of 100 kmol/h and 300 kmol/h, respectively, corresponding to a methanol production rate
of about 27.8 kt/y and an electrolyzer capacity of 31.4 MW, based on a specific energy consumption
of 52 kW h/kg H2 [35].

Overall Scheme

The process consists of feed and recycle compressors, high- and low-pressure flash separation vessels,
a CO2 hydrogenation reactor, and a distillation column. It is assumed that pure CO2 from a carbon
capture process and H2 from AWE enter the system. Figure 3.3 presents the overall flowsheet for the
e-methanol synthesis process.

The feed of CO2 and H2 are compressed by compressors (K-1 and MK-1) and preheated by the feed-
effluent heat exchanger (HX-1) before entering the catalytic multi-tubular reactor (R-1), a so-called
“Lurgi-type” reactor. The outlet stream from the reactor passes two heat exchangers (HX-1 and HX-2)
for heat recovery, then enters the high-pressure vessel (FV-1).

Unreacted gas separated from FV-1 is recompressed by a compressor (K-2) and fed back to the
reactor, with 0.5 % purged to prevent accumulation of impurities. A vapor stream separated from the
low-pressure vessel (FV-2) is purged, while the liquid stream is further purified in the distillation
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column (D-1). The designed process achieves a methanol purity of 99.85 %, which satisfies the
minimum purity requirements for commercial applications [36].

Specifications

A catalytic packed-bed plug flow reactor block (RPlug) and a rigorous distillation column block
(RadFrac) are used for the reactor and the distillation column. RPlug is Aspen Plus’s most config-
urable plug flow reactor model, capable of simulating reactions using user-defined kinetic expressions
with heat transfer to or from a cooling medium. RadFrac is similarly the most rigorous column
model, performing stage-by-stage vapor–liquid equilibrium calculations with options for reaction,
heat integration, and rating. Compressors and heat exchangers are included to maintain constant
reactor inlet conditions at 70 bar and 225 °C, and flash vessels operate at 69.4 bar and 1.1 bar. The
reactor inlet conditions are chosen based on typical industrial operating ranges reported in the litera-
ture [24, 27, 37, 38] and summarized in table 3.4. The reactor is configured with a constant thermal
fluid temperature on the shell side, representing boiling water cooling; the generated steam is used
to supply heat to the reboiler. Table 3.5 summarizes all input specifications for the unit operation
blocks.

The key operating conditions, such as reactor inlet pressure and temperature, are chosen based
on typical ranges reported in the literature on CO2-to-methanol synthesis simulation. Table 3.4
summarizes reactor inlet conditions from selected studies, confirming that the chosen parameters
align with established practice.

Table 3.4: Comparison of reactor inlet conditions for CO2-to-methanol synthesis from the literature.

Reference 𝑇in (°C) 𝑃in (bar)

Mbatha et al. [22] 240 75.7
Cui et al. [24] 220 31
Rinaldi and Visconti [26] 200 92.8
Bisotti et al. [37] 225 69.7
Chen et al. [38] 225 69.7

This work 220 70

3.2 Dynamic Reactor Modeling and Ramp Analysis

Following the steady-state process model, dynamic simulations are performed to assess the reactor’s
behavior under transient conditions. The main goal is to determine whether the process can be
ramped between nominal and minimum loads and stabilize within one hour of the ramp. This
one-hour criterion reflects the temporal resolution of electricity prices in the spot market: if the
reactor can switch to a different load level and stabilize within one hour, then from the second hour
onwards, the plant can fully exploit sustained price advantage that may persist over multiple hours.
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Figure 3.3: Methanol synthesis process flowsheet.
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Table 3.5: Aspen Plus input specifications for the MeOH process.

Block Specification Value Unit

Compressorsa

MK-1 (MCompr) Discharge pressure 71 bar
Number of stages 4

K-1 (Compr) Discharge pressure 71 bar
K-2 (Compr) Discharge pressure 71 bar

Heat exchangers
HX-1 (HeatX) Hot stream outlet temp. 150 °C
HX-2 (HeatX) Cold stream outlet temp. 120 °C
H-1 (Heater) Outlet temperature 220 °C

Pressure drop 0.5 bar
C-1 (Heater) Outlet temperature 35 °C

Pressure drop 0.5 bar
Reactor

R-1 (RPlug) Coolant temperature 220 °C
Number of tubes 1817
Length 6 m
Tube diameter 0.04 m
Pressure drop correlation Ergun
Catalyst bed voidage 0.4
Catalyst particle density 1775 kg/m³
Catalyst particle diameter 5.4 mm

Flash vesselsb

FV-1 (Flash2) Pressure 69.4 bar
FV-2 (Flash2) Pressure 1.1 bar

Distillation column
D-1 (RadFrac) Condenser type Partial

Number of stages 40
Condenser pressure 1.0 bar
Reboiler dutyc 1.58 MW
Bottoms rate 101 kmol/hr

a The isentropic efficiency is 0.75 and the mechanical efficiency is 0.90 for all compressors.
b The duties are zero (adiabatic) for all flash vessels.
c Heat is supplied as steam generated from reactor cooling (heat stream Q-1 in figure 3.3).
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Perfect price foresight is assumed throughout the optimization: the operator knows the full day-ahead
prices before committing to operational decisions, so sustained price advantages can be identified in
advance.

This section first outlines the scope and simplifying assumptions used to make the dynamic analysis
tractable, then describes the ramping strategy implemented in Aspen Plus Dynamics. Subsequent
subsections address the treatment of energy balance in the reactor model, the determination of
minimum load and maximum ramp rates, and the method used for steady-state detection. Together,
these elements define the operability constraints of the process and establish the basis for evaluating
flexibility.

3.2.1 Model Scope and Assumptions

Introducing a time dimension to the steady-state model increases complexity, computational de-
mand, and numerical challenges associated with solving a system of partial differential equations
(PDEs). To maintain tractability, the dynamic analysis in this work is constrained by assumptions
and simplifications designed to reduce the degrees of freedom while preserving the key insights of
interest.

One of the key simplifications made in this work is to focus the dynamic analysis exclusively on
the reactor model, rather than simulating the entire process. This approach is justified by the fact
that the reactor is widely recognized as the primary bottleneck in flexible operation of methanol
synthesis plants [30]. Other unit operations such as compressors, heat exchangers, and flash vessels
are assumed to respond instantaneously to changes in flowrate and composition, given their relatively
fast dynamics compared to the reactor. This assumption allows the dynamic simulation to isolate the
reactor’s transient behavior without the added complexity of other process elements, which while
having their own operational challenges (such as compressor surge under dynamic operation), can be
managed by engineering solutions like implementing anti-surge drums with valves that dampen the
process fluctuations [22, 39].

However, this simplification comes with a limitation that the dynamic analysis cannot account for
the interactions between the reactor and other unit operations. Especially, without a closed recycle
loop, the recycled inlet stream cannot be calculated endogenously from other unit operations and
must be specified externally. To address this limitation, both fresh and recycled feeds are manually
ramped in parallel. Testing confirmed that this simplified approach yields results virtually identical
to full recycle calculations, which is consistent with the short reactor residence time (on the order of
seconds). The recycle stream’s temperature, pressure, and composition are therefore taken directly
from the steady-state model and held constant throughout the dynamic simulation. While in reality
the temperature and composition of the recycle stream would vary slightly during transients, this
assumption is reasonable given the small magnitude of these changes relative to the overall process
conditions.
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The ramping behavior of the inlet streams is implemented using the TASK function in Aspen Plus Dy-
namics, which provides precise control over time-dependent process variables through programmable
specifications. The fresh feed follows a linear profile, maintaining a constant d𝐹/d𝑡 via the RAMP
function, while the recycled feed follows a sinusoidal profile via SRAMP to approximate smooth
acceleration of time-dependent changes. The RAMP and SRAMP functions command selected blocks
(flow controllers) to change a process variable to a given setpoint over a specified duration. In
this work, the fresh feed uses RAMP, which implements a linear trajectory (constant d𝐹/d𝑡), while
the recycled feed uses SRAMP, which produces a smooth, sinusoidal-like transition to approximate
gradual acceleration. Both ramps are executed in parallel inside a PARALLEL condition so that both
commands are executed simultaneously.

An illustrative task configuration is given in listing 3.1, where the fresh feed and the recycled stream
are ramped down from the initial steady state to 40.0 kmol/h and 216.0 kmol/h respectively over 30
minutes. The task is set to start at 10 min into the simulation, making it easier to identify the steady
state before the ramping begins. SPRemote in the ramp functions indicates the flow controller blocks’
set points are set remotely by this script, not by user specification in the block configuration window.

1 Task Rampdown Runs At 10.0
2 PARALLEL
3 RAMP(Blocks(”FC-FRESH”).SPRemote , 40.0, 30.0, CONTINUOUS);
4 SRAMP(Blocks(”FC-REC”).SPRemote , 216.0, 30.0, CONTINUOUS);
5 ENDPARALLEL
6 End

Listing 3.1: Example task configuration for ramping down reactor inlet streams.

The resulting simplified dynamic reactor model is illustrated in figure 3.4, showing the two inlet
streams with their respective ramping profiles. The model is then used to evaluate system response
under time-dependent inlet perturbations. The analysis focuses on key performance metrics including
catalyst-bed temperature gradients, the potential for local hotspot formation, and stabilization times.
These results define essential operability constraints and ensure that subsequent optimization respects
the physical limitations of the plant.

3.2.2 Computational Methodology and Solver Configuration

When imported from Aspen Plus initially, although the reactor model is fully configured, it requires
additional solver settings for the software to solve the system. In the “Solver Options” window, several
modifications to the solver settings are made as follows. In the “Non Linear Solver” tab, Newton
method is selected as the method with increased maximum divergent steps (50) and maximum
iterations (250). In the “Integrator” tab, Implicit Euler method is selected with variable step size
between 10−4 and 0.1, to ensure numerical accuracy while maintaining computational efficiency. The
initial time step is set to 0.01. The dynamic reactor model employs a finite difference discretization
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Figure 3.4: Simplified dynamic reactor model showing fresh and recycled feed streams with their control
signal profiles.

scheme with 201 spatial nodes along the reactor length. This level of discretization balances the
need for spatial resolution to capture temperature and concentration gradients with the computational
demand of solving a large system of equations. Once converged, the model is initialized using
steady-state conditions obtained from the Aspen Plus steady-state simulation, providing a consistent
starting point for transient analysis.

3.2.3 Energy Balance

Aspen Plus Dynamics is an equation-oriented simulation environment, with model blocks written in
a dialect of the programming language Modelica. By examining the equations implemented in the
RPlug block, the energy-balance relationships solved by the software are identified. This review is
necessary to interpret the available specifications when configuring the reactor model with overall
heat-transfer coefficients.

The RPlug block calculates four distinct heat-exchange pairs: (i) between the coolant and the process
stream, (ii) between the process stream and the reactor wall, (iii) between the process stream and the
catalyst bed, and (iv) between the reactor tube wall and the environment.

This formulation is somewhat counterintuitive physically. The model first calculates overall duty
between the process stream and the coolant via an internal heat-exchange submodel, and then
separately evaluates heat transfer between the process stream and the wall and between the process
stream and the catalyst. In effect, the implementation provides two parallel heat-removal pathways
from the process stream—one directly to the coolant and one to the wall—rather than the serial
pathway that exists in reality, where heat passes from process fluid to wall and subsequently from
wall to coolant. In a rigorous transient model, the wall should act as an intermediate thermal mass,
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capturing wall-temperature dynamics and thermal lag.

To address the physically inconsistent heat transfer simulation, the model is configured for this work
to calculate the catalyst-bed temperature explicitly, while assuming that the reactor wall remains at the
same temperature as the process stream and does not lose heat to the environment. This simplification
removes the intermediate wall state and its associated dynamic lag, effectively collapsing the heat-
transfer pathway into a single direct process-coolant resistance. Although this approach reduces
computational complexity and avoids custom modifications to the implementation, neglecting the
thermal mass of the reactor wall removes a thermal buffer that would otherwise dampen temperature
fluctuations during transients. As a result, the simulated catalyst temperature differences during
ramping are expected to be higher than those in a real reactor, where wall thermal inertia would
attenuate the response. This limitation is discussed further in section 4.2.2 alongside the dynamic
simulation results.

3.2.4 Minimum Load and Maximum Ramp Rates

The minimum operable load and maximum ramp rates are key parameters defining the reactor’s
flexibility. These constraints are informed by both literature recommendations and industrial practice,
as well as the physical limitations of the catalyst and reactor design.

Minimum Load

The minimum operable load is determined differently in the literature. Nguyen [27] define the
minimum load based on what Aspen Plus Dynamics can solve within reasonable computing time,
whereas a subsequent publication fixes the minimum load at 20 % of nominal capacity to reflect
mechanical constraints of reciprocating compressors [23]. Industrial perspectives suggest greater
flexibility; for example, the FlexMethanol process by MAN Energy Solutions offers 10 and 20 MW
modular skids (i.e., pre-assembled PtM units) that can each operate at loads from 10–100 % of
nominal capacity [40]. In this work, the minimum load is set at 10 %.

Maximum Ramp Rates

In a methanol synthesis context, maximum ramp rates are typically constrained by allowable temporal
change in catalyst temperature during transients. Heydorn and Diamond [41] recommend a maximum
heating rate of 30 °C/h and a maximum cooling rate of −35 °C/h for their Liquid Phase Methanol
(LPMeOH) process; Nguyen et al. [23] convert these to minute-based limits (0.50 °C/min and
−0.583 °C/min). However, direct conversion from hourly averages to shorter timescales changes
the physical interpretation: the instantaneous rate of change at some reactor position will always
exceed the average slope over the full ramp. While Heydorn and Diamond [41] do not specify
time resolution, very brief excursions (shorter than about 10 s) are unlikely to induce sintering or
deactivation. Therefore, the maximum ramp rate in this work is evaluated from the average slope of
the catalyst temperature over the ramp period,
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max𝑧
Δ𝑇cat(𝑧)

Δ𝑡 (3.9)

and compared with the limits suggested by Heydorn and Diamond [41]. In addition, the instantaneous
derivatives

𝜕𝑇cat(𝑧)
𝜕𝑡 (3.10)

are monitored to capture localized peaks in temperature-change rate during transients.

3.2.5 Reactor Specifications and Monitored Variables

The dynamic reactor model is configured with the specifications listed in table 3.6. The reactor
employs a Cu/ZnO/Al2O3 catalyst with a bulk density of 1 750 kg/m3 and void fraction of 0.275. The
overall heat transfer coefficient between the coolant and the process stream is set to 118 W/(m2 K).

Table 3.6: Dynamic reactor model specifications.

Parameter Value Literature Reference

Reactor length (m) 5.0 7.0 [24, 38]
Reactor tube diameter (m) 0.04 0.04 [22, 38]
Number of tubes 1 817 1 620 [38]; 1 340 [22]
Catalyst particle density (kg/m3) 1 750 1 190 [38]; 1 775 [22]; 1 950 [24]
Bed void fraction 0.275 0.285 [38, 42]; 0.385 [24]
Particle diameter (mm) 3.65 5.4 [37]
Catalyst heat capacity (J/(kg K)) 750 1 000 [24]
Overall heat transfer coeff. (W/(m2 K)) 118 118.4 [38]
Operating pressure (bar) 70 table 3.4
Inlet temperature (°C) 225 table 3.4

3.2.6 Steady-State Detection After Ramping

A straightforward analytical tool was created to determine the time required for the reactor to achieve
steady-state conditions following completion of the ramping process. The steady-state detection
method employs a two-part threshold system based on catalyst temperature derivatives over time.
Once ramping concludes, steady-state conditions are verified when both criteria are met: (i) the root-
mean-square (RMS) value of the temperature time derivative falls below the designated threshold,
and (ii) the maximum absolute temperature change rate at any reactor location is less than 0.01 °C
per minute:
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RMS(𝜕𝑇cat
𝜕𝑡 ) < 0.01 °C/min (3.11)

max𝑧 ∣𝜕𝑇cat(𝑧)
𝜕𝑡 ∣ < 0.01 °C/min (3.12)

For each ramp experiment, the search for steady state is initiated once the ramp is completed. The
first period in which both criteria are satisfied is designated as the onset of a new steady state.

3.3 MILP Optimization Model Formulation

3.3.1 Overview and Integration with Dynamic Modeling

The operational optimization of the e-methanol plant is formulated as a MILP problem that integrates
physical limitations revealed by dynamic reactor simulations into an economically driven scheduling
problem. The MILP formulation is necessary because the plant operates under a binary operational
strategy with discrete capacity levels (100 % and 10 %), requiring integer decision variables to
represent these on/off operational states. This naturally leads to a mixed-integer optimization
problem where binary variables (0 or 1) represent the operational mode at each time period.

Historical electricity data from 2019 to 2023 in SE3 zone in Sweden is sourced from Nord Pool
and fed to the model. These five years of data represent a wide range of market conditions, with
different levels of average prices and volatility [43], providing a great range of scenarios to compare.
Description and characterization of market conditions in relation to optimal operation is discussed in
more detail in section 4.4.1.

An objective function is defined to maximize annual profit by balancing revenues from methanol sales
against costs for electricity, CO2 feedstock, variable operating expenses, and capital expenditures.
It is assumed that captured CO2 is locally available and purchased at a fixed price of EUR 80/t,
reflecting current estimates for carbon capture costs from a large-scale process such as a combined
heat and power (CHP) plant in Sweden [44]. The model is implemented in Python (v3.13) using
Pyomo and solved with the commercial solver Gurobi.

By integrating dynamic modeling results with economic optimization, the economic assessment is
now grounded in the physical constraints of the system, addressing both the engineering feasibility
of flexible operation and its economic viability.

3.3.2 System Description and Configuration

The investigated e-methanol production system consists of two subsystems: an alkaline water
electrolysis (AWE) unit for hydrogen production and a methanol synthesis plant constructed in
section 3.1. AWE is selected for its technological maturity, lower capital cost compared to PEM
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systems, and demonstrated capability for dynamic operation across a wide load range [21]. The
electrolysis system capacity is designed to match the stoichiometric hydrogen demand from the
methanol plant at its design capacity, ensuring full utilization of the hydrogen feedstock while
accepting lower single-pass CO2 conversion. The methanol synthesis plant operates at a design
production rate determined by the feed flowrates specified in section 3.1.2.

The system is designed to operate under a binary operational strategy with two distinct modes to
represent full-load and minimum-load operation. At full capacity, the plant consumes the total power
required for both electrolysis and methanol plant auxiliaries, as determined from the steady-state
process model. At minimum turndown, corresponding to the minimum load constraint established
in section 3.2.4, total power consumption and methanol production decrease proportionally while
maintaining process stability. The plant operates continuously at one of these two capacity levels and
does not include a shutdown mode, reflecting the operational strategy validated through dynamic
simulations.

3.3.3 Equipment Sizing and Economic Parameters

For economic evaluation of the plant, a preliminary “Class 4”1 cost estimation is carried out for
all equipment in the e-methanol production system. This level of estimation matches the process
definition available from steady-state simulation and includes both the methanol synthesis process
equipment and the alkaline water electrolysis system. While sizing unit operations in Aspen Plus is
directly available using Aspen Process Economic Analyzer (APEA), the automatic mapping omits
important details about key components such as the reactor and distillation column, rendering the
results unreliable. Therefore, a cost-curve correlation method is employed using equation 3.13 and
parameters extracted from Towler and Sinnott [45].

Methanol Plant Equipment Costing

The purchased equipment cost for methanol synthesis equipment is calculated using the standard
correlation:

𝐶𝑒 = 𝑎 + 𝑏𝑆𝑛 (3.13)

where: 𝐶𝑒 = purchased equipment cost in US dollars (reference CEPCI=532.9)
𝑎, 𝑏 = cost constants in table 3.7
𝑆 = size parameter, units, lower and upper bounds given in table 3.7
𝑛 = equipment type-specific exponent in table 3.7

1Following the Association for the Advancement of Cost Engineering (AACE) classification system, Class 4 estimates
have a typical accuracy of ±30 % and are appropriate for preliminary feasibility studies based on limited cost data and
design detail [45].
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Table 3.7: Costing Constants for Methanol Plant Equipment [45].

Equipment Size parameter, S Slower Supper a b n

Reciprocating compressor 0 Power (kW) 93 16 800 260 000 2 700 0.75
U-tube S&T exchanger Area (m²) 10 1 000 28 000 54 1.2
Floating head S&T exchanger Area (m²) 10 1 000 32 000 70 1.2
Vertical pressure vessel Shell mass (kg) 160 250 000 17 400 79 0.85
Sieve tray Diameter (m) 0.5 5.0 130 440 1.8

From the process model built in Aspen Plus, key sizing parameters such as compressor power, heat
exchanger area, vessel shell mass, and column diameter are extracted. All equipment costs are
escalated from the base year (2010, CEPCI = 532.9) to 2025 values (CEPCI = 800). The purchased
equipment cost calculated in USD is then converted to EUR using exchange rates for corresponding
years. It is assumed that all equipment in direct contact with H2 is constructed with stainless steel
316, while the rest is made of carbon steel. More detailed methods for cost estimation are provided
in appendix B.

Electrolyzer System Costing

The AWE system is another component in the total capital investment and is costed separately from
the methanol plant equipment. The electrolyzer cost correlation is based on its rated capacity, as
given in equation 3.14:

𝐶electrolyzer = 1 400 × 𝑃rated (3.14)

where: 𝐶electrolyzer = electrolyzer purchase cost in EUR
𝑃rated = rated electrical capacity in kW
1 400 = specific cost in EUR/kW [46]

This specific cost is based on the Danish Energy Agency’s technology catalogue, which reports
875–1400 EUR/kW for alkaline electrolyzer systems in the 10–100 MW range [46]. A value toward
the upper end of this range is adopted, reflecting costs for systems below 100 MW scale. For
comparison, the European Hydrogen Observatory reports higher values around 1666 EUR/kW based
on 2023 market data, which includes full EPC costs [47]. The cost includes the complete electrolyzer
stack, power electronics, gas processing equipment, and basic controls, but excludes balance-of-plant
items such as water treatment and hydrogen compression, which are accounted for separately in the
methanol plant auxiliaries.

The electrolyzer system is assumed to have a reduced installation factor compared to traditional
chemical equipment, reflecting the modular nature of electrolyzer installations and the reduced civil
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works requirements. The total installed electrolyzer cost represents the largest single equipment item
in the integrated plant, as detailed in the economic analysis in chapter 4.

3.3.4 Mathematical Formulation

Objective Function

The MILP optimization model seeks to maximize annual economic profit over the planning horizon
𝑇 by balancing revenues against all major cost components:

max ∑
𝑡∈𝑇

[𝑅𝑡 − 𝐶elec
𝑡 − 𝐶CO2

𝑡 − 𝐶OPEX
𝑡 ] − 𝐶CAPEX − 𝐶fixed (3.15)

where: 𝑅𝑡 = revenue from methanol sales
𝐶elec

𝑡 = electricity costs
𝐶CO2

𝑡 = CO2 feedstock costs
𝐶OPEX

𝑡 = variable operating expenses
𝐶CAPEX = annualized capital expenditures
𝐶fixed = fixed operational costs

The electricity costs 𝐶elec
𝑡 are calculated as the product of time-varying electricity prices and total

system power consumption:

𝐶elec
𝑡 = 𝜋elec[𝑡] × (𝑃electrolyzer[𝑡] + 𝑃process[𝑡]) (3.16)

where: 𝜋elec[𝑡] = time-varying electricity price [EUR/MWh]
𝑃electrolyzer[𝑡] = electrolyzer power consumption [MW]
𝑃process[𝑡] = methanol synthesis process power consumption [MW]

Equation 3.15 represents the fundamental economic trade-off within the plant: maximizing methanol
sales revenue while minimizing electricity purchases, CO2 procurement, variable operations, and
capital costs.

The economic performance of each operational strategy is evaluated using the levelized cost of
methanol (LCoM), calculated as the total annualized costs divided by total methanol production:

LCoM =
𝐶CAPEX + 𝐶fixed + ∑𝑡∈𝑇 [𝐶elec

𝑡 + 𝐶CO2
𝑡 + 𝐶OPEX

𝑡 ]
∑𝑡∈𝑇 𝑀𝑡

(3.17)

where 𝑀𝑡 represents methanol production rate at time 𝑡. This metric enables direct comparison
between operational strategies by normalizing all costs to a per-tonne-of-methanol basis, accounting
for both the total cost structure and production efficiency.
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Decision Variables and Operational Constraints

The model employs binary decision variables to represent operational states:

𝑥100[𝑡] ∈ {0, 1} (100 % capacity operation) (3.18)
𝑥10[𝑡] ∈ {0, 1} (10 % capacity operation) (3.19)
𝑦up[𝑡] ∈ {0, 1} (ramping up transition) (3.20)

𝑦down[𝑡] ∈ {0, 1} (ramping down transition) (3.21)

The fundamental operational constraint ensures there is only one operational state per time period,
i.e., either full load or minimum load:

𝑥100[𝑡] + 𝑥10[𝑡] = 1 ∀𝑡 ∈ 𝑇 (3.22)

Stabilization requirements prevent multiple ramping events within the stabilization period:

𝑡+𝑇min

∑
𝜏=𝑡

(𝑦up[𝜏] + 𝑦down[𝜏]) ≤ 1 ∀𝑡 ∈ 𝑇 (3.23)

where 𝑇min represents the minimum time between consecutive ramping events. This constraint
ensures that after any ramping event, no additional ramps can occur for the next 2 hours. The 2-hour
minimum is a conservative choice that accounts for the hourly resolution of the MILP model and
provides a margin for process stability. This constraint prevents excessive cycling by filtering out
short-lived price fluctuations: for instance, a brief two-hour price spike would not justify a ramp-down
followed immediately by a ramp-up..

Production rates and power consumption are defined as functions of operational states:

𝑀𝑡 = 𝑥100[𝑡]𝑀100 + 𝑥10[𝑡]𝑀10 + 𝑦up[𝑡]𝑀10 + 𝑀100
2 + 𝑦down[𝑡]𝑀100 + 𝑀10

2 (3.24)

𝑃𝑡 = 𝑥100[𝑡]𝑃100 + 𝑥10[𝑡]𝑃10 + 𝑦up[𝑡]𝑃10 + 𝑃100
2 + 𝑦down[𝑡]𝑃100 + 𝑃10

2 (3.25)

where: 𝑀𝑡 = methanol production rate at time 𝑡
𝑃𝑡 = power consumption at time 𝑡
𝑀100, 𝑀10 = methanol production rates at 100 % and 10 % load
𝑃100, 𝑃10 = power consumption at 100 % and 10 % load

During ramping transitions, the plant operates at the average performance between the starting and
ending operational states. When ramping up from minimum to maximum load, production rate and
power consumption are calculated as the arithmetic mean of the two steady-state values. Similarly,
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when ramping down from maximum to minimum load, the average values apply during the transition
hour. This averaging reflects the physical reality that industrial processes transition gradually rather
than instantaneously between operational setpoints.

The ramping transition approach ensures that the model accounts for the intermediate performance
during load changes while maintaining computational tractability. The transition values are typically
higher than the destination steady-state values, meaning that the optimization must balance the
benefits of load changes against the operational characteristics during transitions.

3.3.5 Economic Assumptions

The economic evaluation of the e-methanol plant requires specification of cost parameters, pricing
assumptions, and financial metrics that reflect realistic market conditions and industrial practice. The
parameters are selected to represent current technology costs and market conditions and available
literature values. The following paragraphs detail the major cost categories and pricing assumptions
that are fed to the economic analysis.

Capital Expenditure Assumptions

Capital expenditure assumptions are based on current market data for alkaline electrolysis systems
and established cost correlations for methanol plant equipment. The electrolyzer stack lifetime is set
to 7.5 years and plant lifetime 25 years based on technical targets published by U.S. Department
of Energy [35]. The methanol plant capital costs are annualized over the project lifetime (25 years)
using a discount rate of 5 % to enable comparison with operational costs. Total annualized capital
expenditures are calculated by combining both electrolysis and methanol synthesis equipment costs.

Operating Expenditure Assumptions

Operating expenditures are calculated as the sum of fixed and variable components, following
standard industrial practice for chemical plant economic analysis [45]. Fixed operating expenditure
(OPEX) comprises three main components: (1) methanol plant fixed operations and maintenance
calculated as 4 % of the total installed equipment cost per year, (2) electrolyzer system fixed O&M
(including personnel, routine maintenance, and insurance) calculated as EUR 43/kW per year [47],
and (3) electrolyzer stack replacement costs amortized over the 7.5-year stack lifetime.

Variable OPEX scales with operational intensity and includes process utilities and performance-
dependent maintenance. Electricity costs are excluded from variable OPEX and calculated separately
to isolate the impact of dynamic operation under time-varying electricity prices, which is the central
focus of this study. For the methanol synthesis plant, variable OPEX includes cooling water, steam,
and other consumables required for continuous operation. For the electrolyzer, variable OPEX is
effectively zero: the only consumable is demineralized water, whose cost contribution is negligible
compared to electricity [48, 49]. During ramping transitions, variable OPEX is calculated as the
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arithmetic mean between the starting and ending operational states to reflect intermediate performance
levels.

Market Pricing Data

Historical hourly prices from Nord Pool SE3 zone2 are used for the electricity pricing data. The
optimization is performed separately for each calendar year (2019–2023), with each year’s hourly
price profile representing a distinct market scenario. Profitability metrics are then computed by
combining each year’s operational revenues and costs with the annualized CAPEX and fixed OPEX,
which are independent of electricity prices and remain constant across scenarios. The methanol sales
price is assumed to be EUR 850 per metric tonne, reflecting current market premiums for green
methanol production in EU [50], accounting for the value proposition of renewable-based chemical
synthesis. For comparison, conventional fossil-based methanol trades at approximately EUR 400 per
tonne [51]. CO2 purchase cost is assumed at 80 EUR/t, the cost-optimal value identified by Karlsson
et al. [52] for Swedish CCS supply chains.

Table 3.8 summarizes all key economic parameters adopted in this study and compares them with
representative values or ranges reported in the literature.

Table 3.8: Key economic parameters: adopted values and literature ranges.

Parameter This Study Literature Reference

Captured CO2 cost (EUR/t) 80 35–174 [44]; 43–86 [53]
Methanol sales price (EUR/t)a 850 700–1 400 [53]
Discount rate (%) 5 -
O&M (methanol plant) (%)b 4 2–10 [45]
Alkaline electrolyzer

CAPEX (EUR/kW) 1 400 875–1400 [46]; 1666 [47]
O&M (EUR/kW/y) 43 43 [47]; 50 [54]
Stack cost (EUR/kW) 300 242–388 [55]
Plant lifetime (y) 25 20–40 [35]
Stack lifetime (y) 7.5 7–10 [35]
Specific energy consumption (kW h/kg H2) 52 48–55 [35]

a Current production cost levels of e-methanol.
b Percentage of total installed equipment cost per year.

3.3.6 Case Studies

Representative price scenarios are used to evaluate the economic implications of flexibility. The first
scenario assumes constant full-load operation, which provides a baseline against which to measure the
benefits of dynamic scheduling. Flexible scenarios allow the model to exploit hourly electricity-price

2Nord Pool is the Nordic power exchange; SE3 is Sweden’s third bidding zone, covering the greater Stockholm
region and central Sweden.
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variation while respecting all physical constraints. Comparison of the two cases quantifies the value
of flexibility in terms of both profitability and operating patterns.

3.3.7 Model Limitations and Scope

The analysis employs several simplifying assumptions that define the study’s scope while maintaining
methodological rigor. The model assumes perfect foresight of electricity prices over the optimization
horizon, which is realistic for day-ahead operational planning since European electricity markets
provide 24-hour price forecasts. This approach provides an upper bound for economic performance
and is standard practice in energy systems optimization literature for establishing theoretical potential.
The binary operational strategy (100 %/10 % capacity) excludes intermediate capacity levels to
maintain optimization tractability while capturing the fundamental trade-off between operational
flexibility and cost. This conservative approach likely underestimates the benefits of continuous
capacity modulation, making the economic analysis conservative. Industrial chemical plants often
operate in discrete modes due to equipment constraints, process stability requirements, and safety
considerations, supporting the practical relevance of this assumption.
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4 Results and Discussion

4.1 Steady-State e-methanol Process Model Results

The steady-state process model developed in Aspen Plus converged successfully under the design
operating conditions outlined in section 3.1.2. The model achieves stable operation with design feed
flowrates of 100 kmol/h CO2 and 300 kmol/h H2, corresponding to a stoichiometric ratio of 3:1 for
methanol synthesis. The process demonstrates effective CO2 utilization with a single-pass conversion
of 15.7 % and an overall CO2 conversion of 99.1 % when accounting for the recycle stream. The
target purity of the methanol product is achieved at 99.85 % by weight. Table 4.1 summarizes the
key performance indicators for the steady-state operation.

Table 4.1: Steady-state process performance metrics.

Parameter Value Unit

Single-pass CO2 conversion 15.7 %
Overall CO2 conversion 99.1 %
Recycle ratio 5.3 -
Methanol production rate 27.8 kt/year
Methanol purity 99.85 wt%

4.2 Dynamic Reactor Model Results

4.2.1 Ramping Cycle Analysis

Ramping cycling test results are presented in this section. To verify the feasibility of hourly operation
of the process, 60-min ramping time is selected. The heating rate limits apply when ramping up to
higher loads due to increased exothermic reaction activity, while the cooling rate limits apply when
ramping down to lower loads as the reaction heat generation decreases.

Figure 4.1 shows the temperature derivative analysis over time. The red solid line represents the
maximum heating rate (max ∂𝑇cat/∂𝑡) and the blue solid line shows the maximum cooling rate (min
∂𝑇cat/∂𝑡). The dashed vertical lines indicate the start and end of the ramping period as well as the
time when the system reaches a new steady state after ramping.

When examining the instantaneous temperature derivatives, there are locations where the rate of tem-
perature change exceeds the minute-based equivalent of Heydorn and Diamond [41]’s recommended
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limits (30 °C/h for heating and −35 °C/h for cooling, corresponding to 0.5 °C/min and −0.583 °C/min
respectively), especially around the start and end of each ramp. However, as discussed in section 3.2,
these original limits were specified as hourly averages, and brief instantaneous excursions above
these rates do not necessarily indicate thermal damage to the catalyst.
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Figure 4.1: Temperature derivative analysis.

Figure 4.2 shows the average temperature change rate at each axial position in the catalytic bed
during ramping. While the ramp-down curve remains within the acceptable range recommended by
Heydorn and Diamond [41], the ramp-up curve slightly exceeds the upper limit of 30 °C/h near the
reactor inlet, reaching approximately 35 °C/h. This exceedance is discussed further in section 4.2.2,
where the conservative nature of the model is considered.
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Figure 4.2: Ramping rate analysis along reactor axis.

Figure 4.3 shows the system reaches a new steady state around 10–18 minutes after ramping is
finished. It is observed that it takes longer to reach a new steady state after ramping down compared
to ramping up. This is likely due to the exothermic nature of the methanol synthesis reaction, which
generates additional heat during operation at higher loads, thereby prolonging the stabilization period
after a load decrease.

0 20 40 60 80 100 120 140 160 180 20010−3

10−2

10−1

100

101

Ramp Down Ramp Up

Time (min)

∂𝑇
ca

t/
∂𝑡

(°
C

/m
in

)

Max |∂𝑇cat/∂𝑡| RMS ∂𝑇cat/∂𝑡
Threshold (0.01 °C/min) Stabilization
Ramping Period

Figure 4.3: Stabilization criteria analysis.

Table 4.2 summarizes the key findings from the 60-minute ramping tests, including maximum and
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average ramp rates, and stabilization time.

Table 4.2: Dynamic Reactor Analysis Summary (60-minute ramping)

Parameter Value Units

Data range 0 to 240 minutes (481 time steps)
Axial positions 201 points (0 to 5 meters)
Ramp-down start 10 minutes
Ramp-up start 130 minutes
First stabilization 88 minutes (after ramp-down)
Second stabilization 201 minutes (after ramp-up)
Ramp-down window 78 minutes (10 min → 88 min)
Ramp-up window 71 minutes (130 min → 201 min)

4.2.2 Dynamic Model Limitations: Energy Balance Simplification

As noted in section 3.2.3, the present dynamic reactor model assumes that the reactor wall remains at
the same temperature as the process stream, effectively removing the wall as an intermediate thermal
mass. This simplification has implications for the predicted temperature profiles during load-change
scenarios.

In a physical reactor, the tube wall acts as a thermal buffer between the process fluid and the coolant.
During ramp-up, the wall absorbs heat from the increasingly exothermic reaction before transferring
it to the coolant, which dampens and delays the temperature response. Conversely, during ramp-
down, the wall releases stored thermal energy, slowing the cooling of the catalyst bed. By omitting
the thermal mass of the wall, the model predicts faster temperature responses than would occur in
practice.

Consequently, the temperature change rates reported in figures 4.1 and 4.2 is likely overpredicted, as
the thermal inertia of the wall would smooth out rapid transients. This explains why the ramp-up
curve in figure 4.2 slightly exceeds the recommended limit: the actual reactor, with the wall acting
as a thermal buffer, would experience lower peak heating rates. These effects are conservative from
an operational planning perspective: if the simplified model indicates acceptable or only marginally
exceeded thermal behavior, the actual reactor with additional thermal damping should perform within
acceptable limits. Nevertheless, detailed experimental validation or higher-dimensional simulation
including wall dynamics would be needed to confirm these predictions for final plant design.

4.3 Equipment Costing and Break-Even Analysis

Capital investment for the methanol synthesis process is estimated at 2.6 million EUR/y in annualized
terms. This includes the reactor system, separation units, heat exchangers, and process control
equipment required for methanol synthesis from captured CO2 and electrolytic hydrogen. The cost
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is based on the steady-state process model developed in section 3.1 and calculated using methods
introduced in section 3.3.3.

As presented in table 3.8 in section 3.3.5, the electrolyzer cost was estimated with an assumed
specific cost of 1 400 EUR/kW and 25-year economic lifetime. At the 31.4 MW design capacity,
this translates to approximately 3.7 million EUR/y in annualized terms after amortization over 25
years. The electrolyzer sizing is based on the maximum hydrogen demand for full-capacity methanol
production.

The combined annualized capital expenditure (CAPEX) (electrolyzer plus methanol plant) totals
approximately 6.1 million EUR/y, representing 202 EUR/tonne of methanol at full annual production
capacity. This annualization assumes a 25-year economic lifetime with a 5 % discount rate, following
standard industrial practice for preliminary economic assessments.

4.3.1 Operational Expenditure Structure

The OPEX structure distinguishes between fixed costs that are independent of production level and
variable costs that scale with operational intensity.

Fixed operational costs include maintenance, labor, insurance, and administrative expenses totaling
4 million EUR/y. This comprises:

• Methanol plant fixed O&M: 1.4 million EUR/y (4% of installed capital cost) [45]

• Electrolyzer fixed O&M (including stack replacement): 2.6 million EUR/y [54]

The fixed OPEX structure creates strong economic incentives for high capacity utilization, as these
costs must be recovered regardless of production level.

Variable operational costs scale directly with production intensity and include process utilities exclud-
ing electricity. At full capacity operation, variable OPEX amounts to 85 EUR/h, while minimum-load
operation at 10 % capacity incurs 25 EUR/h due to reduced throughput but similar auxiliary require-
ments.

4.3.2 Contribution Margin and Break-Even Electricity Price

The economic viability of hourly operation depends on the contribution margin, defined as the
difference between revenue and variable costs:

CM𝑡 = 𝑅100 − (𝐶el
𝑡 + 𝐶CO2

𝑡 + 𝐶var
𝑡 ) (4.1)

where: 𝑅100 = hourly revenue from methanol sales at full capacity in EUR/h
𝐶el

𝑡 = hourly electricity cost in EUR/h
𝐶CO2

𝑡 = hourly CO2 cost in EUR/h
𝐶var

𝑡 = other variable operating costs in EUR/h
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When the contribution margin is positive, each hour of full-capacity operation generates revenue
that helps recover fixed costs. When the contribution margin is negative, continued operation incurs
losses beyond the unavoidable fixed costs, and load reduction becomes economically favorable.

Since electricity cost is the only variable that changes hourly, setting CM = 0 and solving for electricity
price yields the break-even electricity price:

𝜋breakeven =
𝑅100 − 𝐶CO2

100 − 𝐶var
100

𝑃100
(4.2)

where: 𝜋breakeven = break-even electricity price in EUR/MWh
𝐶CO2

100 = CO2 cost at full capacity in EUR/h
𝐶var

100 = variable operating costs at full capacity in EUR/h
𝑃100 = electricity consumption at full load in MW

The calculated break-even electricity price for 100 % load operation is 69.8 EUR/MWh. This thresh-
old serves as the economic decision criterion: when hourly electricity prices fall below this value,
full-capacity operation is optimal; when prices exceed it, load reduction minimizes losses.

The value of operational flexibility depends on market conditions. In a stable market with consistently
high electricity prices and relatively low methanol prices, the contribution margin is frequently
negative, and the ability to reduce load avoids accumulating losses during unfavorable hours. On the
other hand, in a stable market with consistently low electricity prices, full-capacity operation yields
positive contribution margins throughout the year, and flexibility provides little benefit. The greatest
value emerges in volatile markets, where frequent price excursions above and below the break-even
threshold create opportunities to avoid high-cost hours while capturing low-cost production periods.

4.4 MILP Optimization Results

Building on the cost structure and break-even threshold established in section 4.3, the MILP optimiza-
tion model was solved independently for each calendar year from 2019 to 2023. Each single-year
optimization uses the hourly electricity prices from that year to determine the profit-maximizing
operational schedule, while annualized capital and fixed operating costs—amortized over the as-
sumed 25-year plant lifetime—remain constant across all scenarios. This approach isolates the
effect of electricity market conditions on operational strategy while maintaining consistent economic
assumptions. One-hour ramping followed by one-hour of stabilization time is assumed based on the
dynamic reactor analysis in section 4.2.
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4.4.1 Operational Strategy Analysis

The optimized operational schedules reveal how the plant exploits market signals. Figure 4.4 presents
a comprehensive overview of the optimization results for each year, showing electricity price patterns,
breakeven thresholds, and the resulting operating mode selected in each hour.

Each subplot displays electricity prices sampled every 12 hours for visual clarity, while the optimiza-
tion model uses hourly resolution. Operational zones are indicated by colored backgrounds: green
areas represent periods of 100 % capacity operation, and yellow areas represent 10 % minimum
load operation. The optimization model determines the most economical operational mode by
comparing electricity costs to production revenues using the break-even electricity price threshold of
69.8 EUR/MWh.

The profiles reveal distinct patterns across different market conditions:

• 2019: Stable, low-volatility conditions with predominantly full-capacity operation (99.0%
utilization) and only occasional ramping events.

• 2020: Similar stability with slightly lower average prices, prompting modest increases in
minimum-load operation.

• 2021: Moderate volatility introduces more frequent transitions between full load and minimum
load as the plant arbitrages price swings.

• 2022: Extreme volatility during the European energy crisis triggers frequent load adjustments
and extended shutdown periods (47.5% utilization), reflecting aggressive demand-response
behaviour.

• 2023: Recovery-period pricing yields intermediate ramping frequency and improved opera-
tional stability compared to 2022.

These operating patterns provide context for the economic metrics analyzed in section 4.4.2.

4.4.2 Cost Comparison Across Years

Figure 4.5 compares LCoM for each strategy across the five-year analysis period. The dynamic
optimization strategy reduces LCoM in most years, with the largest gains occurring during volatile
market conditions.

In 2019, the optimization provides negligible LCoM reduction (0.2 EUR/t), as the stable, low-
volatility market conditions offered few opportunities for price arbitrage. When electricity prices
consistently remain low, the contribution margin is positive and the optimizer prefers full capacity
operation almost every hour. With fixed costs dominating per-tonne costs, maximizing production
volume is the most effective strategy; flexibility provides minimal benefit when there are few hours
with negative contribution margins to avoid.
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Figure 4.4: Multi-year operational profiles showing electricity prices (sampled every 12 hours) and optimal
plant operation strategies (2019–2023).
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Figure 4.5: Multi-year cost comparison between fixed operation and dynamic optimization strategies.

• 2019: 0.2 EUR/t savings (872.0 EUR/t → 871.8 EUR/t)

• 2020: 8.6 EUR/t savings (696.6 EUR/t → 688.0 EUR/t)

• 2021: 103.6 EUR/t savings (1 154.2 EUR/t → 1 050.6 EUR/t)

• 2022: 441.0 EUR/t savings (1 799.5 EUR/t → 1 358.5 EUR/t)

• 2023: 85.6 EUR/t savings (1 008.2 EUR/t → 922.6 EUR/t)

Volatile years (2021–2023) yield substantial LCoM reductions through flexibility, though in all
scenarios the LCoM exceeds the assumed market price of e-methanol. Notably, 2020 was the only
year where dynamic optimization achieved profitability, benefiting from both low average electricity
prices and the ability to avoid the few high-price hours. This indicates that while operational
flexibility captures significant value under volatile electricity markets, overall economic viability
remains constrained by production costs.

4.4.3 LCoM Breakdown Analysis

The economic benefits of flexible operation are most prominent in years with high electricity price
volatility. Figure 4.6 provides a detailed breakdown of LCoM for the year with the highest electricity
prices (2022), comparing the 100 % all-year strategy with dynamic optimization.

The analysis reveals that electricity costs constitute the largest variable component, representing
approximately 75 % of total costs in the 100 % strategy during 2022. Dynamic optimization reduces
electricity costs by 770 EUR/t. The dramatic reduction in electricity costs (from 1 264 EUR/t to
494 EUR/t) more than compensates for the increases in per-unit fixed costs that result from reduced
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Figure 4.6: Cost breakdown comparison for 2022 showing the impact of dynamic operation on cost components.

plant utilization, though the decrease in the production volume leads to higher fixed costs per tonne
of methanol produced.

4.5 Results Summary

This section provides a summary of the operational and economic performance across all analyzed
years (2019–2023). The comprehensive analysis presented in table 4.3 summarizes insights about
the quantified economic benefits as well as key metrics of dynamic e-methanol plant operation under
varying electricity market conditions.

The economic benefits of operational flexibility demonstrate a strong correlation with electricity
market volatility. Under the stable, low-price market conditions of 2019, dynamic optimization
provided minimal cost difference, while the extreme volatility of 2022 enabled maximum savings of
441.0 EUR/t, representing a 24.5 % cost reduction compared to fixed operation.

The plant’s operational profile adapts significantly to market conditions. Under the stable 2019 price
scenario, the optimizer maintains full capacity for 99.0 % of the time with minimal ramping events
(42 cycles). Conversely, under the volatile 2022 price scenario, the optimizer reduces full-load
operation to only 47.5 % and requires 392 ramping cycles, exploiting price arbitrage opportunities.

The average cost savings across the five-year period amount to 128 EUR/t (12.9 % reduction), with
individual yearly savings ranging from 0.2 EUR/t to 441.0 EUR/t. A strong correlation between
electricity market conditions and the value of flexibility is confirmed.
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Table 4.3: Comprehensive e-methanol Plant Operational Performance Analysis (2019–2023).

Metric 2019 2020 2021 2022 2023

Electricity market characteristics
Market volatility Low Low Medium Very high High
Actual year average (EUR/MWh) 38.4 21.2 66.0 129.2 51.7
Optimized avg. price (EUR/MWh) 38.0 19.3 43.0 47.6 30.3

Operational hours distribution
100% load operation (hours) 8 659 8 476 6 118 3 654 6 091
10% load operation (hours) 101 284 2 642 5 106 2 669
Ramping transitions (hours) 85 253 641 785 589

Operational flexibility metrics
Total ramping cyclesa 42 126 320 392 294
Avg. 100 % period durationb (hours) 201.4 66.7 19.1 9.3 20.6
Avg. 10 % period durationc (hours) 2.3 2.2 8.2 13.0 9.0

Production performance
Methanol production (tonnes/year) 27 512 26 989 20 254 13 216 20 177
Capacity utilization (%) 99.0 97.1 72.9 47.5 72.6

Economic performance
100% all-year strategy LCoM (EUR/t) 872.0 696.6 1 154.2 1 799.5 1 008.2
Dynamic optimization LCoM (EUR/t) 871.8 688.0 1 050.6 1 358.5 922.6
Cost savings from flexibility (EUR/t) 0.2 8.6 103.6 441.0 85.6
Relative cost reduction (%) 0.0 1.2 9.0 24.5 8.5

a Number of complete load transitions (100 % → 10 % → 100 %) per year.
b Average duration of continuous full-load operation before ramping to minimum load.
c Average duration of continuous minimum-load operation before ramping to full load.
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5 Conclusions

This study develops and validates a dynamic reactor model to characterize the thermal response and
operational constraints of an e-methanol synthesis reactor under flexible operation. The primary con-
tribution is establishing physically grounded ramp rates, stabilization times, and minimum load limits
through dynamic simulation, which are then integrated into a year-scale MILP scheduling framework
to assess the economic implications of flexibility under historical electricity-price volatility.

The main contributions are:

1. Dynamic reactor modeling: A detailed reactor model capturing catalyst bed temperature
dynamics, reaction kinetics, and heat transfer limitations was developed and validated. 60-
minute ramp tests established achievable ramp rates (100 % to 10 % capacity in one hour),
stabilization times (10–18 min to reach steady-state thermal conditions), and operational
constraints.

2. Integrated optimization: The validated operational boundaries (ramp rates, stabilization
times, minimum load) were embedded into a parsimonious binary (100 %/10 %) MILP
scheduling model. The binary representation is sufficient for the studied configuration where
CO2 supply tracks H2 production; intermediate load levels would become relevant with
independent CO2 source constraints, minimum production commitments, or multi-unit plant
designs.

3. Multi-year economic assessment: Using Nord Pool SE3 data (2019–2023), the optimization
framework quantifies volatility-dependent economic gains from flexibility across stable and
crisis market conditions, demonstrating how reactor-level constraints translate to system-level
value.

Key Findings and Economic Insights

Flexibility value scales with price volatility: annual cost savings range from 0.2 to 441.0 EUR/tonne-
methanol (0.0 to 24.5 % relative reduction) between 2019 and 2022. In the high-price 2022 baseline
case electricity purchases account for about 80 % of total cost; dynamic operation lowers electricity
cost by about 770 EUR/tonne-methanol (1 264 → 494 EUR/tonne) while maintaining product quality,
partly offsetting higher specific fixed costs at reduced utilization.
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Implications for Power-to-X Integration

Results indicate that the plant can both produce methanol and shift electrical load within validated
ramp and stabilization limits, providing demand-side flexibility. A clear trade-off emerges: avoiding
high-priced operation when variable costs exceed contribution margin versus underutilizing fixed
investments when operating at minimum load. Future PtX system designs should treat flexibility
(ramp rate, minimum load, response latency) as a first-order design variable rather than a downstream
operational adjustment.

Future Market Context: The 15-Minute Resolution

The ongoing transition to a 15-minute Market Time Unit and imbalance settlement period across
European electricity markets will quadruple the number of discrete price intervals relative to the
hourly data used here, likely further increasing potential for flexible operation of PtX systems. The
60-minute ramps tested in this work would not capture sub-hourly price variations; achieving faster
ramp capability and additional intermediate load levels could therefore unlock greater economic
benefits than the hourly-resolution analysis quantifies here.

Limitations and Future Research Directions

This work has limitations that should be acknowledged while recognizing their conservative nature.
In the dynamic modeling aspect, the analysis focuses only on the reactor, which contains the largest
thermal mass and most complex kinetics, making it the primary bottleneck for dynamic response.
This approach provides optimistic estimates of ramp times, since real plant response would likely be
slower when considering heat integration effects.

The thermal rate limits used to verify ramp compliance are drawn from Heydorn and Diamond [41],
which remains the only available quantitative source for dynamic thermal constraints in methanol
synthesis; however, these limits were established for a liquid-phase slurry reactor, which differs
from the conventional gas-phase fixed-bed configuration used in this work. The transferability of
these limits to fixed-bed reactors is uncertain, and dedicated experimental or simulation studies on
gas-phase reactor dynamics would strengthen the validity of the ramp rate verification.

In addition, only two operational states (100 % and 10 % capacity) were modeled to maintain
optimization tractability while capturing the fundamental flexibility trade-offs; even more flexible
operation modeling (e.g., with additional sustained intermediate load levels) might show even greater
economic benefits. Catalyst degradation and electrolyzer stack aging effects affecting overall process
efficiency are not explicitly linked to operational cycling frequency, which would be necessary for
a more accurate long-term economic assessment accounting for equipment lifetime impacts. The
economic model treats methanol and CO2 prices as fixed, which is appropriate for establishing
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upper-bound benefits and is consistent with standard practice in energy systems optimization studies.
However, treating such prices as variables would enable even more strategic optimization.

Future research shall expand the scope in several directions. Multi-level load operation with interme-
diate capacity states would become relevant in systems with independent CO2 source constraints,
minimum production commitments, or multi-unit plant designs. Coupling degradation models
to cycling intensity would provide more realistic long-term cost assessments. The transition to
15-minute electricity market settlement will create new arbitrage opportunities.
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APPENDIX A. ASPEN PLUS PROCESS FLOWSHEET

A Aspen Plus Process Flowsheet

Figure A.1 shows the original process flowsheet as built in Aspen Plus V14. Figure 3.3 in section 3.1.2
is a reconstructed version of this flowsheet.

Figure A.1: Methanol synthesis process flowsheet in Aspen Plus V14.

47



B Cost Estimation Methodology

This appendix provides detailed information on the cost estimation methodology employed in this
study, including cost index adjustments, currency conversion, material considerations, installed
equipment cost calculations, and unit operation characterization for costing purposes.

Cost Index and Currency Adjustments

Equipment costs are adjusted using the Chemical Engineering Plant Cost Index (CEPCI) to account
for inflation and temporal cost variations, and converted to EUR using annual average exchange rates.

Equation 3.13 and table 3.7 are based on US dollars with the base CEPCI in January 2010. Therefore,
calculated costs are first adjusted to the current year using equation B.1, and then converted to EUR
using equation B.2.

𝐶current = 𝐶base × CEPCIcurrent
CEPCIbase

(B.1)

𝐶EUR = 𝐶USD × Exchange RateUSD/EUR (B.2)

where: 𝐶current = equipment cost in current year
𝐶base = equipment cost in base year
CEPCIcurrent = cost index for current year
CEPCIbase = cost index for base year
𝐶EUR = cost in EUR
𝐶USD = cost in US Dollars

The CEPCI values and USD/EUR exchange rates for the relevant years are presented in table B.1.

Table B.1: CEPCI values and USD/EUR exchange rates for cost adjustments (2019–2024).

Year CEPCI USD/EUR

2019 607.5 0.893
2020 596.2 0.876
2021 708.0 0.845
2022 816.0 0.950
2023 789.7 0.925
2024 824.2 0.908
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Material Considerations

Material selection significantly impacts equipment costs due to varying material properties, avail-
ability, and processing requirements. This section outlines the material specifications and associated
cost multipliers used in the economic evaluation.

Equipment material selection is based on process conditions, particularly:

• Operating pressure and temperature

• Fluid corrosivity (especially H2 compatibility)

• Regulatory requirements for hydrogen service

• Economic considerations

Base equipment costs (carbon steel) are adjusted using material cost multipliers:

Table B.2: Material cost multipliers relative to carbon steel.

Material Multiplier Application

Carbon steel 1.0 Baseline material
Stainless steel 316 2.7 H2 service, high corrosion resistance

Installed Equipment Cost Calculation

Purchased equipment costs are converted to installed costs using installation factors that account for:

• Direct installation labor

• Piping and instrumentation

• Electrical installation

• Insulation and painting

• Structural modifications

• Project management and engineering

The total installed cost is calculated using the factored cost method:

𝐶installed = 𝐶purchased × 𝐹total (B.3)

where: 𝐶installed = total installed equipment cost
𝐶purchased = purchased equipment cost
𝐹total = total installation factor

Installation factors vary significantly by equipment type and complexity.
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Table B.3: Installation factors for different equipment types.

Equipment Type Installation Factor Complexity

Reciprocating compressors 2.8 Medium
Shell-and-tube heat exchangers 3.2 Medium
Pressure vessels 4.1 Medium-High
Distillation columns 4.0 High
Packed-bed reactors 3.8 High

Pressure Vessel Mass Calculations

The mass of pressure vessels is calculated based on shell thickness and head geometry to determine
material requirements for cost estimation. The minimum required vessel wall thickness 𝑡 is computed
using:

𝑡 = 𝑃𝑖𝐷𝑖
2𝑆𝐸 − 1.2𝑃𝑖

(B.4)

where: 𝑡 = vessel thickness
𝑃𝑖 = internal pressure
𝐷𝑖 = internal diameter
𝑆 = maximum allowable stress
𝐸 = welded joint efficiency

In this work, high-pressure vessels employ 2:1 American Society of Mechanical Engineers (ASME)
ellipsoidal heads, while the low-pressure vessel (FV-2) uses torispherical heads for cost savings. A
joint efficiency of 0.95 and a minimum wall thickness of 5 mm are assumed.

Unit Operation Characterization

The multi-tubular catalytic reactor consists of a tube-and-shell heat exchanger with catalyst packed
in the tubes. The distillation column includes a shell-and-tube condenser, kettle reboiler, and sieve
trays.
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