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Abstract

In this report, a review of liquid-liquid equilibrium (LLE) is presented with local-composition
models (Wilson equation, NRTL, and UNIQUAC/UNIFAC) and phase stability criterion for LLE is
introduced. Experimental data of LLE for two binary systems containing sulfolane and one of
alkanes (pentane and hexane) over the temperature range of 300 K to the upper critical solution
temperature (UCST) were correlated using NRTL (non-random-two-liquid) model. The NRTL
parameters were curve-fitted from experimental data and a new tau (7) function with an added linear
term is introduced to show improved accuracy compared to the function implemented by Aspen
Institute. For NRTL calculation and parameter optimization, the same ‘isoactivity’ objective function

was set to be minimized by simple search method.
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1 Introduction

The separation process is essential to obtain a necessary product with a high concentration in
industrial process with mixture. The process of extraction and production of aromatic hydrocarbons
by reforming naphtha produced in naphtha reforming process is called the BTX(benzene-toluene-
xylene) process [1], [2]. BTX can be obtained through sulfolane, BTU, PAREX, and ISOMAR
processes. Figure A is a typical diagram of this process provided by Sweeney and Bryan [2, p. 10].
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Figure A. Shell sulfolane extraction process. E, extraction; ED, extractive distillation; RC, recovery column. Courtesy of UOP, Inc.

The manufactured toluene is usually converted into benzene, which is commonly used as a raw
material for styrene monomer (SM), nylon and cumene. The polyester film can be produced with
para-xylene (PX) [3]. This project aims to study liquid-liquid equilibria (LLE) of alkanes contained
in the raw material and the solvent in the sulfolane process. Various solvents including sulfolane,

glycol and NFM (N-formylmorpholine) may be used in the sulfolane process [4], [5].

Before running the process, it is important to theoretically optimize the chemical process to
determine the amount of solvent and raw material for appropriate scale of facilities and operating
cost. In order to predict the behavior of each component in the solution, it is necessary to know the
physical properties of the mixture in a LLE. Especially, an actual solution shows different behavior
from ideal solution due to intermolecular interactions and non-randomness. Therefore, to make more
precise and accurate calculation, it is necessary to understand thermodynamic properties of an actual
solution and use appropriate formulas. Thermodynamic models for computing the properties of real

solution include Wilson Equation, NRTL model, UNIQUAC and UNIFAC. As mentioned above,



these models take into account the interaction and non-randomness between compositions. Each

model simulates actual solution by introducing different set of parameters.

2 Theory
2.1 LLE (Liquid-Liquid Equilibrium)

An unexpected presence of two liquid phases can be a critical problem in distillation and pumping.
Hence one must make sure by experiment or calculation, whether the solution is in single liquid
phase or two or more liquid phases are present in the solution. Despite such practical importance in
simulation of process, LLE has not received nearly as much attention as VLE (vapor-liquid

equilibrium). There are several reasons for this [6]:

1) The experimental determination of LLE compositions can often be carried out on an ad hoc
basis which reduces the incentive for correlation.

2) The correlation of LLE da can be, from numerical point of view, much more difficult than the
correlation of VLE.

3) Temperature effects are more pronounced for LLE than for VLE.

4) Economically, distillation plays a bigger role in industry than does extraction.
Nevertheless, many references, especially experimental work, exist for LLE.

Like VLE, LLE satisfies the following condition with phase a and B at constant temperature. In this
project, the effect of pressure on the behavior of LLE is negligible.

fr = fiﬁ (i(species) = 1,2, ...,N)

According to the definition of activity coefficient, y; = fl-“/xi fi, the fugacity in each phase can be

expressed as below.
Y = x v fF

The fugacity of pure species i is f;* = fiﬁ = f; at constant temperature and pressure. So, under LLE

conditions, the equation below is satisfied.
B. B
x(yi = x;y]

The activity coefficient depends on the composition, temperature and pressure. Therefore, for the
binary solution, the activity coefficient can be measured with x;, T, and P through the relation

(x1 + x5, = 1) [7, pp. 590-591].



2.2 Local-Composition Models

Theoretical developments for describing the molecular thermodynamics of liquid-solution behavior
are often based on the concept of local composition. The ideal solution is a totally random mixture of
constituent particles, so the concentration of the total solution and a certain portion of the solution
are the same. However, in actual solution, the constituent particles are not evenly mixed like ideal
solution, and local concentration of solution is different to entire concentration. Hence it is important
to understand the concept of local composition in order to simulate the behavior of actual solutions
[7, pp. 471-472]. To measure the properties of actual solutions in consideration of this concept,
Wilson equation, NRTL equation, UNIQUAC(Universal Quasi Chemical), and UNIFAC
(UNIQUAC Functional group Activity) can be used.

2.2.1 Wilson Equation

Wilson equation proposed by G. M. Wilson in 1964 can calculate the behavior of the solution
through Ay, and A,;.

GE
ﬁ: —z xiln le‘Aij

i J

= —[x; In(x;A11 + x3A12) x5 In(x;Ayq + x,A5,)]  (for a binary system)
GE

“RT —[x1In(xy + x2A12) + x2 In(xz + x1421)] (¥ A = Ay =1)

Equation 1. Wilson equation

By applying the relation between activity coefficient and excess Gibbs energy, activity coefficients
are represented as following equations (detailed calculation procedure for Wilson equation is in

Appendix A.1):

Azq A1z )]

ny; n(x; + xA1) + x; Xy, + XM X1+ XA,

Aqz Azq )]

ny, n(xz X1 21) X1 x; + x2A12 Xy + x1A21



For infinite dilution (x; = 0 or x, — 0), these equations become:
lim Iny; =lny> =—-InA, +1—-Ay
x1—>0

(x2-1)

lim Iny; =Inyy® = —InAy; +1—Aq,
x50

(x1—1)

A serious disadvantage of Wilson’s equation lies in its inability to predict limited miscibility. When
Wilson equation is substituted into the equations of thermodynamic stability for a binary system, no
parameters A;, and A,; can be found that indicates the existence of two stable liquid phase. So,
Wilson equation should be used only for liquid systems that are completely miscible or else for those
limited regions of partially miscible solutions that only one liquid phase is present. Therefore, in this

project, Wilson’s equation not been adopted as actual liquid-liquid solution model [8, pp. 164—165].

2.2.2 NRTL(Non-Random-Two-Liquid) Model
NRTL model reflects the characteristics of the local composition of the actual solution.

E
G o GyyTy G12712

X1x, RT N X1 +x,Gy1 Xy + x1Gq5

Equation 2. NRTL Equation

Here,
G2 = exp(—arty;), Gy = exp(—at,y)

@

Ti]' =ai]-+ T

+ Ci]'lnT

By applying the relation between activity coefficient and excess Gibbs energy, activity coefficients
are represented as following equations (detailed calculation procedure for Wilson equation is in

Appendix A.2):

[ G2y 2 G127T12
Iny, =x% |t ( ) +
" 2 i 21\xy + 2,654 Xy + x1Gq;

G, )2 G21T21 l

Iny, =x?|1 (
vz ! | 2 \xy + 1,6y, X1+ x2Ggq



The infinite-dilution (x; = 0 or x, — 0) values of the activity coefficients are given by equations:

lim Iny; =Iny® =151 + 712G = Tp1 + T12Xp (—atyy)
x1-0(x2—1)

lim Iny, =Iny;” =115 + 721Ga1 = Ty + T216Xp (—aTyq)
xX—-0(x1-1)

2.2.3 UNIQUAC/UNIFAC Method

E
The UNIQUAC equation calculates g = — - as the sum of the two terms. g¢ is a combinatorial

term, which is related to the different shape and size of molecules in the mixture. g® is a residual
term, which is different from residual Gibbs free energy defined as the difference between real and

ideal Gibbs free energy, and it explains intermolecular interaction. For a multicomponent system,

c P; 0;
g =le-lnx—i+ SZqixilnai
L

1

= — z qix; In z QJTJL
i J

Xy X4 I (u]l uu)l (r; = 1)
- i = Tjj =

= . = eXp
NETLE b Xixg)

Equation 3. UNIQUAC equation

Function g¢ contains pure-species parameters only, whereas function g® incorporates two binary
parameters for each pair of molecules. In addition, 7;, q; and u;; reflect the relative molecular

volume, relative molecular surface area and influence of temperature, respectively.

Unlike UNIQUAC, which describes the effects of molecules constituting a mixture in solutions,
UNIFAC represents the non-randomness and interaction of solutions in consideration of a specific
structural units. These structural units are called subgroups. The great advantage of the UNIFAC
method is that a relatively small number of subgroups combine to form a very large number of
molecules [7, pp. 749-751]. However, UNIQUAC and UNIFAC are not used in this project, since
NRTL already gives sufficiently accurate predictions with properly optimized parameters with much

less complexity.



2.3 Requirement for LLE: Phase Stability
Criterion of stability for a single-phase binary system is given as [7, p. 438]:

At fixed temperature and pressure, a single-phase binary mixture is stable if and
only if AG and its first and second derivatives are continuous functions of x;,

and the second derivative is positive.

In other words, in order for a two-phase equilibrium of a binary system to be stable, it is required that
the second derivative is negative, as well as AG and its first and second derivatives are continuous

functions of x;.
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Figure 1. Phase stability profiles at constant T for pentane(1)/sulfolane(2) mixture, by NRTL model

For example, Figure 1 shows AG/RT and its first and second derivative with respect to x; for
pentane (1)/sulfolane (2) binary mixture. From the Figure 1¢, one can interpret approximate
temperature range for LLE: isotherms of 300K, 325K, 350K, and 375K have negative value while
isotherms of 400K and 425K always have positive values. This implies the LLE is observed for the
system at up to certain temperature between 375K and 400K (which is later found to be 390K see
4.2).



2.4 NRTL: Parameter Estimation from LLE Data

Parameter estimation for NRTL is essentially about finding a set of optimum 7 values from
experimental data, since a is conventionally fixed as 0.2, 0.3, etc. depending on the characteristics
of the system [9]. Then a proper model function of T can be curve-fitted to the optimum 7 values to

obtain coefficients in the model function.

Step 1: Set an objective function

Optimum parameters can be found by numerically solving an objective function defined to satisfy

equilibrium conditin. Relative isoactivity objective function was used in this project:

OF(T15,7T91) = z (ln(xl‘x)/ia) - ln(xiﬁyiﬁ'))z

i

= (ln(xf‘yf‘) - ln(xfylﬁ))z + (ln(xg‘yé") - ln(xfyzﬁ))z

Step 2: Find optimum 74, and 7,4

Here, direct search method was used to scan each of 7;, and 7,4 around initially assumed values.
Search step must be set low enough to obtain good results, however, too small step size results in

slow computing performance.

Step 3: Develop a model function to curve-fit

Once optimum t values are found, a model function can be developed by inspecting the curve shape
or found from literature. In this work, to take account for 1) inverse proportionality, 2) logarithmic

component, and 3) linear trend, following model function was developed to be fitted:

b12
T2 = Aq3 +T + C12 lnT + dlZT

b21
Ty1 = Ayq + T‘l‘ Coq InT + d21T

Step 4: Curve-fit model function to optimum 7, and 7,4

Curve fitting the model function to optimum parameters can be done by computer software

packages, such as 1sqcurvefit function by MATLAB® ‘curve fitting” Toolbox.

Step 5: Plot LLE diagram with curve-fitted parameters and compare with experimental data

Finally, calculating deviation of NRTL model with fitted parameters from the experimental data is

proceeded to examine the accuracy and precision of the model.
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2.5 NRTL: Tie-line Calculation Steps

It has been reported by Serensen et al. [9] that NRTL calculation can be carried out by finding x§*

and xf at the points where d(AG)/dx; = 0. However, depending on the profile of AG — x; curve,
this method can result in yielding false solution which then necessitates further maneuver. Therefore,
in this work, Tie-line calculation was done by searching optima of both x{¥ and xf from 0 and 1
respectively (or from the values obtained from the previous T) until minimum of an objective

function is found. In this work, the search step size is set to be 0.0001 in correspondence to the

significant figures of experimental data reported by Ko et al. [10].

Step 1: Set T

Generally, activity coefficient is a function of pressure, temperature, and composition. However, in
LLE system, it is a very weak function of pressure since when incompressible-liquid assumption is
made. Therefore, in a binary LLE system, the composition of each species in both phases can be

determined once T is fixed.

Step 2: Assume x{ and x’f

It is possible to obtain analytical solution when activity coefficient is represented by simple models.
However, it is more viable to numerically solve the set of equations when the model is complicated

as in the case of NRTL model used in this work.

By assuming x{* and xf , a complete description for the composition of the binary system is
obtained since x7 = 1 — x (m = , ). However, it is not the correct description unless LLE

criteria are also satisfied:

xyE=xPyf =12

i

Step 3: Set an objective function

To find the composition that satisfy the criteria, an object function is defined as to imply LLE
criterion for each species in the equilibrium.

OF(xf‘,xﬁ) = Z (ln(xf‘yf‘) — ln(xl.ﬁ]/iﬁ))2

l
= (ln(xf‘yf‘) - ln(xfylﬁ))z + (ln(xg‘yé") - ln(xfyzﬁ))z

To increase the rate of convergence, the composition information obtained for the previous T can be

used as the initial guess.
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Step 3: Evaluate objective function with varying x§{ and x’f until optimum is found

The objective function is first calculated with varying initially assumed values of x{* and xf until

an optimum is found. x{* and xf at the optimum are then printed with T that was previously set in

Step 1. The procedure is repeated again from Step 1 with T = T + AT, until no more LLE is

observed either by phase transition or complete miscibility.

3 Results and Discussion

3.1 Optimized NRTL Parameters

Optimal NRTL parameters 7,, and 7,; for pentane (1)/sulfolane (2) and hexane (1)/sulfolane (2)

binary mixtures found in the steps introduced in 3.4 are presented in Table 1 and 2.

Table 1. Optimum 74, and 7, with corresponding O.F. value

1a. pentane (1)/sulfolane (2) mixture

1b. T4, and 7,4 for hexane (1)/sulfolane (2) mixture

T/K T1g T21 O.F. T/K T12 Ty O.F.
304.31 5.681233 2.310832 0.0000000041 300.30 8.031419 4.234521 0.0000000378
310.80 5.344492 2.150315 0.0000000608 307.43 6.408498 3.562131 0.0000000237
320.72 4.855850 1.918148 0.0000000137 323.51 5.477957 3.157205 0.0000000482
330.41 4.366814 1.703825 0.0000000125 348.72 4.578427 2.772902 0.0000000229
340.50 3.883634 1.502780 0.0000000322 363.36 3.786722 2.545974 0.0000000584
350.15 3.438850 1.337284 0.0000000169 372.41 3.574560 2.314090 0.0000000619
354.82 3.228585 1.267422 0.0000000068 377.72 3.282047 2.240975 0.0000000234
359.64 3.006532 1.202645 0.0000000009 384.43 3.256661 2.154913 0.0000000296
364.75 2.770519 1.145041 0.0000000017 393.92 3.020774 2.065671 0.0000000108
369.78 2.532064 1.101131 0.0000000116 403.51 2.931650 1.924569 0.0000000006
374.11 2.320387 1.075143 0.0000000048 412.29 2.799578 1.830223 0.0000000225
376.49 2.201725 1.066399 0.0000000042 422.92 2.778481 1.662621 0.0000000273
379.39 2.053957 1.061791 0.0000000062 429.93 2.651154 1.542555 0.0000000010
380.35 2.005967 1.060672 0.0000000002

NRTL parameters for the system presented by Ko et al. [10] are used as initial guesses for

calculation at each temperature. Comparison of the parameters from the literature and from this work

are presented in Figure 2. The optimum parameters (in Table 1) and the curve-fitted model are

shown together in Figure 3.
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Figure 2. T values found in literature and optimized in this work

As shown in Figure 2a, 71, and 7,; for pentane (1)/sulfolane (2) mixture calculated in this work
(dashed lines) showed more linear and inversely proportional trend with regard to temperature
compared to the parameters published in literature (solid lines), respectively [10], [11]. Although
optimum parameters for hexane (1)/sulfolane (2) mixture showed irregular and rather
undifferentiable curve profile as shown in Figure 2b, they showed more inversely proportional trend

in general in lower temperature range and more linear or logarithmic trend in higher temperature

range.
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Figure 3. Optimum t values and curve-fitted models



The curve-fitted parameters for the model function are summarized in Table 2. Note that in this
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work, a new linear term (d,T or d,;T) is added to the model implemented by Aspen Institute [11]

to take account for linear trend.

Table 2. NRTL parameters for calculating 7 values

pentane hexane
parameters Aspen This work Aspen This work
o 0.3 0.3 0.3 0.3
a;; 16.56 173.431 -20.24 -3322.2729
aj, -21.29 -171.649 -21.29 -2499.5696
by2/K 4095.84 -3696.772 5279.57 115152.3133
by1/K 2842.68 10300.836 3086.87  79997.7140
c12/(nK)1 -4.25 -27.215 1.68 552.0269
cz1/(nK)1 2.49 24.508 2.6 422.1049
dyp /K1 - -0.422 - -0.6751
dy /K1 - 0.629 - -0.5686

Aspen: t=a+b/T+cInT

This work: T=a+b/T+cInT +dT

3.2 LLE Diagrams by NRTL

With the parameters a, b, c, d that define the function 7,,(T) and 7,,(T) estimated in 4.2, Now

LLE diagram can be plotted by the steps introduced in 3.5.

3.2.1 Pentane (1)/Sulfolane (2) Binary Mixture
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NRTL from literature
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NRTL, this work
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Figure 4 and S present LLE diagram for pentane (1)/sulfolane (2) binary mixture calculated by

NRTL model, with t functions developed by Aspen and optimized in this work, respectively. A

quick inspection shows the prediction done by NRTL model correlated in this work is more accurate

especially in the sulfolane-rich a phase (yellow solid line). Deviation of the calculation from the

experimental data for each temperature are presented in Table 3. While the average absolute

deviation (AAD) of Aspen NRTL model is 2.6283%, the calculation done in this work resulted in

significantly more accurate results with AAD 0.1658%. It is also noteworthy that the maximum

deviation observed in Aspen model is 8.5694 for x§* at 350.15K, while the maximum deviation

observed in this work is 0.5905% for x{* at 320.72K. These entries are underlined in Table 3. This

significant improvement of accuracy is achieved by 1) introduction of a linear term in 7 function as

well as 2) more accurate curve-fitting.

Table 3. LLE of pentane (1)/sulfolane (2) binary mixture by NRTL, with parameters from literature and this work

Exp ) NRTL NRTL Exp ] NRTL NRTL
literature this work literature this work

T/K x# x# Err (%) x# Err (%) x¥ x¢ Err (%) x¢ Err (%)
304.31 0.9989 0.9989 0.0040 0.9989 0.0010 0.0584 0.0605 3.5274 0.0587 0.5822
310.80 0.9984 0.9984 0.0000 0.9984 0.0000 0.0661 0.0664 0.4841 0.0658 0.4690
320.72 0.9972 0.9971 0.0140 0.9971 0.0050 0.0796 0.0767 3.6181 0.0791 0.5905
330.41 0.9950 0.9947 0.0281 0.9950 0.0020 0.0952 0.0889 6.6702 0.0952 0.0210
340.50 0.9909 0.9903 0.0575 0.9910 0.0121 0.1148 0.1050 8.5366 0.1153 0.4443
350.15 0.9838 0.9827 0.1088 0.9839 0.0122 0.1377 0.1259 8.5694 0.1383 0.4285
354.82 0.9785 0.9771 0.1472 0.9785 0.0020 0.1507 0.1389 7.8235 0.1512 0.3052
359.64 0.9708 0.9691 0.1720 0.9707 0.0103 0.1661 0.1551 6.5984 0.1661 0.0120
364.75 0.9592 0.9574 0.1877 0.9589 0.0344 0.1849 0.1766 4.5051 0.1845 0.2271
369.78 0.9422 0.9409 0.1412 0.9417 0.0488 0.2071 0.2036 1.6659 0.2063 0.3911
374.11 0.9204 0.9205 0.0163 0.9201 0.0282 0.2303 0.2339 1.5632 0.2296 0.3040
376.49 0.9043 0.9058 0.1703 0.9043 0.0022 0.2455 0.2544 3.6293 0.2450 0.1874
379.39 0.8788 0.8830 0.4802 0.8795 0.0751 0.2672 0.2847 6.5344 0.2676 0.1347
380.35 0.8687 0.8739 0.5986 0.8695 0.0944 0.2756 0.2963 7.5181 0.2762 0.2177
0.1518 0.0234 5.0888 0.3082

NRTL literature AAD (%) : 2.6203
NRTL this work AAD (%) : 0.1658
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3.2.2 Hexane (1)/Sulfolane (2) Binary Mixture
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Figure 6. LLE of hexane (1)/sulfolane (2) mixture by NRTL  Figure 7. LLE of hexane(1)/sulfolane (2) mixture by NRTL,
from literature this work

Figure 6 and 7 present LLE diagram for hexane (1)/sulfolane (2) binary mixture calculated by
NRTL model, with 7 functions developed by Aspen and optimized in this work, respectively.
Similarly to hexane (1)/sulfolane (2) mixture, the prediction done by NRTL model correlated in this
work is more accurate especially in the sulfolane-rich @ phase (yellow solid line). Deviation of the
calculation from the experimental data for each temperature are presented in Table 4. While the
average absolute deviation (AAD) of Aspen NRTL model is 3.6790%, the calculation done in this
work resulted in significantly more accurate results with AAD 2.8920%. It is also noteworthy that
the maximum deviation observed in Aspen model is 32.6087 for x{ at 300.30K, while the
maximum deviation observed in this work is 12.6000% for xi* at 370.43K. These entries are
underlined in Table 4. This significant improvement of accuracy is achieved by 1) introduction of a

linear term in T function as well as 2) more accurate curve-fitting.
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Table 4. LLE of hexane (1)/sulfolane (2) binary mixture by NRTL, with parameters from literature and this work

Exp .NRTL NRTL Exp .NRTL NRTL
literature this work literature this work

T/K x‘f x‘f Err (%) x’f Err (%) x¢ x¢ Err (%) x¢ Err (%)
300.30 : 0.9999 0.9997 0.0200 0.9999 0.0050 0.0092 0.0122 32.6087 0.0103  11.5217
307.43 : 0.9995 0.9996 0.0070 0.9997 0.0190 0.0150 0.0140 6.6000 0.0131  12.6000
323.51  0.9987 0.9991 0.0360 0.9988 0.0120 0.0203 0.0186 8.1281 0.0197 3.1527
348.72 + 0.9966 0.9971 0.0532 0.9951 0.1535 0.0276 0.0279 1.0507 0.0302 9.3116
363.36 | 0.9918 0.9948 0.2984 0.9914 0.0393 0.0332 0.0349 5.1205 0.0370  11.3253
372.41 © 0.9893 0.9925 0.3235 0.9887 0.0586 0.0432 0.0401 7.1065 0.0418 3.3565
377.72 ; 0.9849 0.9908 0.5970 0.9870 0.2142 0.0469 0.0436 7.0362 0.0449 4.2857
384.43 + 0.9842 0.9881 0.3932 0.9847 0.0508 0.0520 0.0485 6.7115 0.0493 5.0962
393.92 © 0.9788 0.9829 0.4230 0.9811 0.2380 0.0584 0.0567 2.9281 0.0570 2.4658
403.51 | 0.9756 0.9756 0.0021 0.9770 0.1404 0.0698 0.0668 4.2550 0.0669 4.0974
412.29 ;1 0.9706 0.9663 0.4441 0.9724 0.1824 0.0794 0.0784 1.3098 0.0792 0.2519
422.92 1 0.9681 0.9501 1.8614 0.9650 0.3181 0.0980 0.0963 1.7143 0.1004 2.4286
429.93 | 0.9608 0.9352 2.6644 0.9583 0.2571 0.1161 0.1115 3.9621 0.1203 3.6090
0.5479 0.1299 6.8101 5.6540

NRTL literature AAD (%) : 3.6790
NRTL this work AAD (%) : 2.8920

3.3 Limitations

Although LLE calculations for both mixtures (pentane/sulfolane and hexane/sulfolane) showed great

accuracy, some limitations exist for this project:

1) Since two parameters, 7, and 7,; have to be optimized, the optimum for objective function

2)

was found by a simple search method for both parameters in this project, Although this

method has an advantage that local minimum can be avoided, it has a significant limitation

that long computing time is required to yield high-precision results. For example, calculating

optimum parameters for 13 datapoints for hexane/sulfolane binary system with search range

+1.5 from initial guess and step size 0.0002 took 713 seconds and 667 seconds for

pentane/sulfolane and hexane/sulfolane binary mixture, respectively total. The objective

function values were all optimized lower than 107 in both systems.

The focus on this project was on binary mixtures containing an alkane (pentane and hexane)

and sulfolane. However, for practical applications, binary LLE predictions offer limited

utility compared to ternary or other multi-component mixtures. Nevertheless, this report can

serve as a good introduction to understanding principles of LLE using sulfolane as a solvent.



17

4 Conclusion

Local-composition models for LLE (liquid-liquid equilibrium) were reviewed, and representation of
activity coefficient for each component from the excess Gibbs free energy was presented for Wilson
equation and NRTL Requirement for LLE in terms of phase stability was given from the Gibbs

energy change of mixing and qualitative analysis of Gibbs energy-composition diagram was made.

A new temperature-dependent function for NRTL (non-random-two-liquid) model were developed
with an added linear term, and the parameters were fitted to experimental data for two alkane
(pentane or hexane)/sulfolane binary mixtures from literature, yielding greatly improved accuracy
compared to NRTL model with temperature-dependent function developed by Aspen Institute. LLE
tie-lines for the two systems were obtained from 300K to UCST.

The parameter optimization was highly accurate with minimizing the isoactivity objective function
as small as 10~7, however, the process took more than 10 minutes for each dataset due to its simple
search method. More efficient ways to find the optima can be further studied to perform in the same

accuracy with reduced computing time.
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6 Appendix
Appendix A. Calculation of Activity Coefficient from Local-Composition Models
A.1 Wilson Equation
The relation between the activity coefficient and excess Gibbs free energy is shown as below.

GE
Gt ¢f d (W)
RT ~ RT ' ™% dx,

Iny; =

GE
RT —[x1In(xy + (1 —x)A12) + (1 —x1) In(x1Ap; +1 = x4)]

= —[x1 In(x1 (1 — Agz) + Agp) + (1 — x)In (1 (A — 1) + 1)]

d (GF x1(1—Agz) x(Az1 — 1)
—=]= -]l A _ 1] A -
i, <RT> [ n(x; + x;A12) + X+ 50, n(x;Az1 + x2) + iy T,
For activity coefficient of species 1,
GE
-, )
M= R T2 Ty
= —x1[In(x; + x,A13) + x2 In(x; + x145,)]
x1%2(1 = Ag) xz(A21 - 1)
- le ln(xl + szlz) + m - xz ln(x1A21 + xz) + m

x1(1—Aqz) n x2(Ag1 — 1))]

= —|In(x; + x,A,) + x
[ ( 2A12) 2<x1 + x3A4; Xz + x1M21
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x1(1—A12) | xp(Ng1— 1) xq(1— Ag2)(xp + 21421) + x2(Az1 — D(xy + x2A45)
X1 + XM Xz + x1M5q (x1 + x28) (x2 +x1021)

_ X7 Ag1 + x1X; — X7 Miahgr — X1X0A1p + X1 X0 A1 + X5 Ap1A1p — X120 — X5y
(x1 + x2A12) (32 + x1A24)

_ X101 + (X2 — x1)A31A 15 — XA 45 _ Azq _ Aqz
(x1 + x3A12) (x + x1A21) Xy + x1021 X1+ X5
Ayy A1z
)
ny; n(x; + xA12) + x; % ¥ Xl Tt xyhe

Activity coefficient of species 2 is calculated likewise:

Iny, = —[x; In(x; + x3A415) + x5 In(x; + x1454)]

2
x7 (1 —Aq3) x1X(Ay1 — 1)
= —x; In(x Mgy + xp) +

X1+ XA, x1In(x1hz; + X2) x1My1 + X,

+ [xl In(x; + x,A15) +

x1(1—Aqp) N x2(Az1 — 1))]

= |In(x, + x,A,;) — x
l (x; 1h21) 1<x1+x2A12 Xy + X101

x1(1 = Agp) N x2(Ng1 — 1) _ x1(1 = A1) (xz + x1051) + x2(Azy — 1) (g + x2A13)
X1+ X012 Xp+x10p (21 + x2012) (32 + x1A31)

_ X7 Mgy + x1%; — X{A1pAp1 — X1XpA1p + X1Xp Mg + X515 — X1%, — X3 Mg,
(x1 + x2A12) (32 + x1A21)

_ X101 + (x% - xf)A12A21 — X312 _ Azq _ A1z
(x1 + x3712) Oy + x1A51) Xo + X101 X1+ XM,
Aqz Azq
R PP
ny, n(x; +x;A21) + x4 Xt 0y X+ Xihge

For infinite dilution (x;—0 or xo—0), these equations become :

lim Iny; =Iny® =—InA, +1—- Ay,
x1—0

(x2—1)

lim Iny, =Iny;°> = —InAy,; +1— A4,
x2—>0

(x1—1)
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A.2 NRTL

Using NRTL, the relation between the activity coefficient and excess Gibbs free energy is expressed

as follows.

E
G" < G21T21 G12T12 ) Gy Ty XXy | GypTipXiXo
— = X%, =
RT X1+ x,Gp1  Xp +x1Gq5 X1+ %G1 Xy +x1Gq5

i G_E _ (X2 — x1) (X1 +x2G21) G21T21 — (1 = G21)G21T21X1 X,
dx; \RT (x1 + x,G51)?

(x2 = x1) (X2 + x1G12)G12T12 — (G1z2 — 1) G12T12X1 X,

+
(x2 + x1G12)?
Gy To1 X1 Xy + G2 Ty X2 — Goy Ty X2 — G2 T91X1X5 — Gy Ty X1 Xy + G2 Ty X1 X
_ G21T21X1X; 21T21%3 21T21X7 21T21%X1X2 21T21%X1X2 21T21%X1X2
(x1 + x2G51)?
Gi7T19X% + G*T19X1X9 — G19T19X1 X9 — G2 T1,X% — G2 T19X1 X0 + G1oT10X1 X
12T12X2 12T12X1%> 12T12X1%X2 12T12X1 12T12X1%2 12T12X1X>
2
(xz + x1G132)
E 2 2 2 2 2 2
. da (G _ G31T21X5 — G1To1X7 | GyaT1pX5 — GipT1pX]
oy \pr | T 2 2
dx, \RT (x1 + x2G21) (x + x,G12)
GE
GE d B
| —+ —RT
ny; = X2
RT dx,

2 3 2 3 2 2
Gy ToaXiXy | GipTipXaXy | G31T21X5 — GoaToXiXy | GiaTiaXy — GioTipXiXp
- 2 2
X1+ %G1 X2+ X161 (x1 + x3G24) (xz + x1Gy2)

2 3 2
Gy Ty X% (x1 + X2G31) + G31T21X5 — G21T21 X1 X7
(1 + x2G21)?

3 2 2
G12T12X1X2(X3 + X1G12) + G12T12X5 — Gi,T12X1X;
(xy + x,G12)?

2 2 2, 2 3 2
_ Gy Xi Xy + G171 X1 X5 + G51T21X5 — G T2 Xi X2
- 2
(1 + x3G21)

2 2 2 3 2 2
G12T12X1X5 + G1T12X7 X5 + G12T12X5 — GoT12X7 X,
(x2 + x,G12)?

22 2
X563 Ty x3G1,T12
- 2 2
(x1 + x2G21) (x2 + x1Gy2)




G2y 2 G127T12
~Iny, =x?|t ( ) +
" 2 l 2\xy 4 2,654 Xy + x1G1;

Likewise,

2 2 3 2 2 3
G21T21X1X2  G12T12X1Xy  Ga1To1X1X5 — Ga1T21X7  GpaT12X1X5 — GipT12X7

Iny, =
27 X+ %3Gy, Xy + %16y (x4 + x2G31)? (x2 + x1G12)?

2 2 2 _ 2 2 3
_ Gy ToaXxi Xy + G171 X1 X5 — G311 X1 X5 + G1To1 X3
- 2

(1 + x3G21)

2 2 2 2 2 3
G12T12X1X5 + G{T12X7 X5 — G12T12X1 X5 + GipT12X7
2
(x2 + x1G12)

2 2,2
X1l Ty X1 Gi3T12
- 2 2

(x1 + x2G4) (x2 + x1G13)

G, )2 G21T21 l

~lny, =x2|1 (
vz ! l 2 \x, + /Gy, X1+ X2Goq

The infinite-dilution(x;—0 or x—0) values of the activity coefficients are given by equations :

)}ir_{lo Iny; =Iny” =751 + 742612 = T21 + T12€xXp (—aTy3)
(x2—1)

J}imo Iny, =Iny;® =115 + 721G1 = Ty + T218Xp (—aTyq)
2—)

(x1—1)



Appendix B. MATLAB® Codes with Execution Results

B.1 Gibbs Energy Diagram (‘Gx_plot.m’)

clear all
close all
clc

% alkane = 'pentane'; T range = [300 325 350 375 400 425]
alkane = 'hexane'; T range = [380 400 420 440 460 480];

load([alkane ' expdata.mat'])
load([alkane ' parameters'])
load([alkane ' parameters opt.mat'])

parameters = parameters Aspen;
parameters = parameters opt;

set (groot, 'defaultlLineMarkerSize', 10,
'defaultLinelLineWidth', 1,
'defaultAxesFontName', 'Times',
'defaultAxesFontSize', 12);

expT = data(:,1);
expX1ll = data(:,2);
expX12 data(:,3);

Gxplot = figure('Position', [0 0 400 600]);
dGxplot = figure('Position', [400 0 400 600]);
ddGxplot = figure('Position', [800 0 400 6001]);

figure(2),plot(linspace(0,1,1001),0,"'-k");
m = 100000;
stop = 0;
for j = 1:6

if stop == 1

break
end
T = T range(J);

for i = 1l:m+1

’

x1 (i) = (i-1)/m;
deltaGRT (i) = G NRTL (parameters, T,x1(i));
end
for i = 1:m
d deltaGRT (i) = ( deltaGRT(i+l) - deltaGRT(i) ) / (1/m);
end
for i = 1:m-1
dd deltaGRT (i) = ( d deltaGRT(i+l) - d deltaGRT(i) ) / (1/m);
end
figure(l),plot(xl,deltaGRT, 'DisplayName', [num2str(T) 'K']); hold on

x1im ([0 171);

'K']); hold on

figure(2),plot (x1(1:m),d deltaGRT, 'DisplayName', [num2str (T)

x1im ([0 11); ylim([-5 51])

figure(3),plot (x1(1:m-1),dd deltaGRT, 'DisplayName', [num2str(T) 'K']);
x1im ([0 11); ylim([-5 51])

end

figure(l),legend('Location', "'northwest', 'AutoUpdate', 'off
xlabel ('$$x 1$$"', '"Interpreter', 'latex"')
exportgraphics(gca, [alkane ' G.jpg'], 'Resolution', 300)

")

hold on
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figure(2),legend('Location', 'southwest', 'AutoUpdate', 'off")
yline (0, 'LineWidth', 1)

xlabel ('$Sx 1$$"', 'Interpreter’', 'latex"')
exportgraphics(gca, [alkane ' dG.jpg'], 'Resolution',300)

figure(3),legend('Location', "southwest', 'AutoUpdate', 'off")
yline (0, 'LineWidth',1)

xlabel ('$Sx 18$', 'Interpreter', 'latex"')
exportgraphics(gca, [alkane ' ddG.jpg'], 'Resolution', 300)
function delta GRT = G NRTL(parameters, T,x1)

alpha = 0.3;

al2 = parameters(l);
bl2 = parameters(2);
cl2 = parameters(3);
dl2 = parameters(4);
a2l = parameters(5);
b21 = parameters(6);
c21 = parameters(7);
d21 = parameters(8);

taul2 = al2 + bl2/T + cl2*1log(T) + d12*T;
tau2l = a2l + b21/T + c21*log(T) + d21*T;
Gl2 = exp(-alpha*taul?2);
G21 = exp(-alpha*tau?l);

x2 =1 - x1;
delta GRT = ( x1l*log(xl) + x2*log(x2)
+ x1*x2* ( (G21*tau2l)/ (x1+x2*G21) + (G21*taul2)/ (x2+x1*G1l2) ));

end

P N 1 2| ] 2 \ .

—— 380K \
0.2 B ——— DK —— 0K ‘\
” 420K | ” 20K \
—— 40K —— 440K

03 ' L ' L 5
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B.2 NRTL Parameter Optimization (‘find tau.m’)

clear all
close all

% clc

% alkane = 'pentane'; 1lb = 0; ub = 6;

alkane = 'hexane'; 1lb = 1; ub = 9;

fprintf (['\n\n << FOR ' upper (alkane) ' >>\n'])

load([alkane ' expdata.mat'])
load([alkane ' parameters'])

al2 = parameters Aspen(l);
bl2 = parameters Aspen(2);
cl2 = parameters Aspen(3);
a2l = parameters Aspen(5);
b21 = parameters Aspen(6);
c21l = parameters Aspen(7);

taul2 Aspen = al2 + bl2./data(:,1) + cl2.*log(data(:,1));
tau2l Aspen a2l + b2l./data(:,1) + c2l.*log(data(:,1));

set (groot, 'defaultlLineMarkerSize', 10,
'defaultLineLineWidth', 2,
'defaultAxesFontName', 'Times',
'defaultAxesFontSize', 12,
'defaultlLegendFontSize', 12);

expT = data(:,1);
expX1ll = data(:,2);
expXl2 = data(:,3);
clear data

m = 5000; % Adjust precision of finding optimal tau
range = 3;

% fprintf(' m = %d\n',m)

oI EEES==m == =S L ————————————— \n')
fprintf (' T/K taul?2 tauzl OF\n"')
fprintf('——————mm \n'")

tic
for k = 1 : size(expT)

T = expT (k)
x11 = expX1l (k) ;
x12 expX12 (k) ;

[taul2 opt(k), tau2l opt(k), OF(k)] = opt tau(taul2 Aspen(k),
x12, m, range);

fprintf (' %$.2f %$f S%$f %.10f\n',
T, taul2 opt(k), tau2l opt(k), OF(k))
end

FPTIRAEE (! crreereremeeemmmemossosssemmmmmmmos e s s oo \n'")
toc

taul2 opt = taul2 opt';
tau2l opt tau2l opt';

fig figure('Position', [0 10000 600 400]);

tau2l Aspen(k), x11,

plot (expT, taul2 Aspen, 'DisplayName', 'S\tau {12}$, ${\mathrm {Aspen}}$'); hold on

(
plot (expT, tau2l Aspen, 'DisplayName', 'S\tau {21}$, ${\mathrm {Aspen}}$');
(

plot (expT, taul2 opt,'--', 'DisplayName', 'S\tau {12}$, ${\mathrm {optimum}}$');
plot (expT, tau2l opt,'--', 'DisplayName', '$\tau {21}$, ${\mathrm {optimum}}$');

xlabel ('$S$TSS $S$S{\mathrm {[K]}}$S$', 'Interpreter','latex"')
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ylabel ('$$\taus$$', 'Interpreter', 'latex')
% x1im([300 3907])

ylim([1lb ub])

legend ('Interpreter', 'latex')

exportgraphics(gca, [alkane ' tau comparison.jpg'], 'Resolution',300)

T data = expT;

taul2 data = taul2 opt;

tau2l data = tau2l opt;

clear expT taulZ opt tau2l opt

opts = optimset ('Display','off'");
fun = @(k,xdata) k(1) + k(2)./xdata + k(3).*log(xdata) +k(4)*xdata ;

K12
k21 _

(@}

[6,1,0,-11;
[21 ll Ol_l];

o
|

k12 = lsqgcurvefit (fun, k12 0, T data, taul2 data,[],[],opts);
k21 = lsqgcurvefit (fun, k21 0, T data, tau2l data,[],[],opts);
fprintf ('\n")

fprintf (' Fitted coefficients:\n\n"')

fprintf (' al2 $11.4f ', k12(1))
fprintf (' a2l %$11.4f\n', k21(1))
fprintf (' bl2 $11.4f ', k12(2))
fprintf (' b21 %$11.4f\n', k21(2))
fprintf (' cl2 $11.4f ', k12(3))
fprintf (' c21 $11.4f\n', k21(3))
fprintf (' dl12 $11.4f ', k12(4))

fprintf (' d21 %11.4f\n', k21(4))

parameters opt = [k12, k21];
save ([alkane ' parameters opt.mat'], 'parameters opt')

taul2 fitted = fun(k1l2,T data);
tau2l fitted = fun(k21,T data);
fig = figure('Position', [0 0 600 400]);
plot (T data,taul2 data, 'x'); hold on
plot (T data,tau2l data, 'x');
plot (T data,taul2 fitted,'-");
plot (T data,tau2l fitted,'-");
legend(...

'$$\tau_{12}$$, $\mathrm{optimum}s$',

'$S\tau {21}$S$, S\mathrm{optimum}$',

'$$\tau_{12}$$, $\mathrm{fitted}$',

"$$\tau {21}$$, S$\mathrm{fitted}$',

'Interpreter', 'latex', 'Location', 'northeast')
xlabel ('$$TSS $S${\mathrm {[K]}}$$', 'Interpreter','latex")
ylabel ('$$\tau$s', 'Interpreter', 'latex')
% x1im([300 3907])
ylim([1lb ub])
exportgraphics(gca, [alkane ' tau fitted.jpg'], 'Resolution',300)

function [taul2 opt, tau2l opt, OF] = opt tau(taul2 in, tau2l in, xlalpha, xlbeta, m,
range)

alpha = 0.3;

for i =1: m
taul2 = taul2 in + range * (-0.5 + i/m);

for 3 = 1: m
tau2l = tau2l in + range * (-0.5 + j/m);

Gl2 = exp(-alpha*taul?2);
G21 = exp(-alpha*tau2l);



x1 = xlalpha;
x2 =1 - x1;

gammal2 = exp( x2"2

(x2+x1*G12)"2 ) );

gamma22 = exp( x172

(x1+x2*G21)"2 ) );

k11

x1*gammal2;

k21 = x2*gamma2?2;

x1l = xlbeta;
x2 =1 - x1;

gammall = exp( x2"2
(x2+x1*G1l2) "2 ) );

gamma2l = exp( x1"2
(x1+x2*G21)"2 ) );

k12 = xl*gammall;

* ( tau2l*(

* ( taul2*(

* ( tau2l*(

* ( taul2*(

k22 = x2*gammaZ2l;
OF (i,7J) = (k11 - k12)"2 +
end
end
[minOF1l, indexl1l] = min (OF) ;
[minOF2, index2] = min (minOF1) ;
indl = indexl (index2) ;
ind2 = index2;
OF = minOF2;
taul2 opt = taul2 in + range * (-0.5 +
tau2l opt = tau2l in + range * (-0.5 +
end
<< FOR HEXANE >>
T/K taul?2 tau2l OF
300.30 8.031419 4.234521 0.0000000378
307.43 6.408498 3.562131 0.0000000237
323.51 5.477957 3.157205 0.0000000482
348.72 4.578427 2.772902 0.0000000227
363.36 3.786722 2.545974 0.0000000564
372.41 3.574560 2.314090 0.0000000619
377.72 3.282047 2.240975 0.0000000234
384.43 3.256661 2.154913 0.0000000296
393.92 3.020774 2.065671 0.0000000108
403.51 2.931650 1.924569 0.0000000006
412.29 2.799578 1.830223 0.0000000225
422.92 2.778481 1.662621 0.0000000273
429.93 2.651154 1.542555 0.0000000010
Elapsed time is 659.200407 seconds.
Fitted coefficients:
al2 =-3322.2729 a2l -2499.5696
bl2 115152.3133 b21 79997.7140
cl2 552.0269 c21 422.1049
dlz -0.6751 dz1l -0.5686

G21/ (x1+x2*G21)

Gl2/ (x2+x1*G12)

G21/ (x1+x2*G21)

Gl2/ (x2+x1*G12)

(k21 - k22)"2;

indl/m) ;
ind2/m) ;

)2

) "2

) "2

Gl2*taul2

G21*tauz2l

Gl2*taulz

G21l*tauz2l
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B.3 NRTL LLE Calculation (‘LLE_NRTL.m’)

Contents

=  Full LLE Diagram
= NRTL Result for Error Analysis

= Function
Full LLE Diagram

clear all
close all

clc

% alkane = 'pentane'; Tlb = 300; Tub = 400;
alkane = 'hexane'; Tlb = 300; Tub = 480;
load([alkane ' expdata.mat'])

load([alkane ' tau Aspen.mat'])

load([alkane ' parameters'])

load([alkane ' parameters opt.mat'])

set (groot, 'defaultlLineMarkerSize', 10,
'defaultLinelLineWidth', 2,
'defaultAxesFontName', 'Times New Roman',
'defaultAxesFontSize', 12);

T data = data(:,1);
x11 data = data(:,2);
x12 data = data(:,3);

tic

for par = 1:2
clear result
fprintf ('\n\n")
if par ==1
parameters = parameters Aspen;
fprintf (' Parameters from Aspen')
else
parameters = parameters opt;
fprintf (' Parameters optimized')
end

fprintf('\n')

Forlngs (== \n")
fprintf (' T/K x11 x12\n")
fprintf ('--~——————---——-"-"-"-"""-""---— \n")
x12 in = 0;

x11 in = 1;
for k = 1:2000

T = 300 + 0.1*(k-1) ;

result(k,1) = T;

fprintf (' %.1£ ', T)

[result (k,3), result(k,2), ~, ~, ~] = NRTL(x12 in, x11 in, parameters, T);

if result(k,3) >= result (k,2)
fprintf (' NO LLE!\n'")

result(k,:) = [];
k = k-1;
break

end

fprintf (' $0.4f $0.4f\n', result(k,2), result(k,3))
x12 in = result(k,3);
x11 in = result(k,2);



end
fprintf ('\n")
toc

LLE = figure('Position', [0 O 500 500]);

plot(x12 data, T data, 'x'); hold on
plot (x11l data, T data, 'x');

plot (result(:,3), result(:,1), '-');
plot (result(:,2), result(:,1), '-');

pbaspect ([1 1 117)

x1im ([0 11)
ylim ([Tlb Tub])
legend(...

'$$x_1"\alphas$s, $S${\mathrm {exp}}s$sS',
'$Sx 17\betas$s$, S$S{\mathrm {exp}}$$',
'$$x _1"\alphas$s, $S${\mathrm {calc}}s$s’,
'$Sx 1”"\beta$s$, $S${\mathrm {calc}}$s ',
'Interpreter', 'latex',
'Location', 'northwest"')
xlabel ('$Sx 18$', 'Interpreter', 'latex"')
ylabel ('$$T$S $${\mathrm {[K]}}$S$', 'Interpreter', 'latex"')
exportgraphics(gca, [alkane ' LLE ' num2str (par)

'.Jjpg']l, 'Resolution', 300)

end
480 480
] X
3
460 1 460 -
— ), e
440 1 440 ;
X X ¥
420 x a0l 0K
v 13
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400 4 4 400 x
] X X b
F 3 F~ b
380 jé 0L e
X A x
360} b 60|}
X p
340+ | a0t
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320 X 120 1<
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NRTL Result for Error Analysis

clear all
close all
% clc

°

% alkane = 'pentane'; Tlb = 300; Tub = 400;

°

alkane = 'hexane'; Tlb = 300; Tub = 480;

load([alkane ' expdata.mat'])
load([alkane ' tau Aspen.mat'])
load([alkane ' parameters'])
load([alkane ' parameters opt.mat'])

set (groot, 'defaultlLineMarkerSize', 10,
'defaultLinelLineWidth', 2,
'defaultAxesFontName', 'Times New Roman',
'defaultAxesFontSize', 12);
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T data = data(:,1);
x11 data = data(:,2);
x12 data = data(:,3);

for par = 1:2
fprintf ("\n\n")

if par ==

parameters = parameters Aspen;

fprintf ([' < ' upper(alkane) '/SULFOLANE > w/ parameters from literature'])
else

parameters = parameters opt;

fprintf ([' < ' upper(alkane) '/SULFOLANE > w/ parameters optimized'])
end
fprintf ('\n")
fprintf ('============================================================ \n'")
fprintf (! Exp NRTL Exp NRTL\n')
fprintf (' T/K x11 x11 err (%%) x12 x12 err (%$%)\n"')
FORLMELE (¥ ommromorsmoessmosmm s s o e s e e s S e S S e S e S D S S DS S DD \n'")

x12 in =
x11 in = 1;
tic

|
o
~

for k = 1:size (T _data)

T = T data(k);

result(k,1) = T;

[result (k,3), result(k,2), taul2(k), tau2l(k), OF(k)] = NRTL(x12 in, x11 in,
parameters, T);

err(k,1) = abs( ( result(k,2) - data(k,2) ) / data(k,2) ) *100 ; % x11 error

err(k,2) = abs( ( result(k,3) - data(k,3) ) / data(k,3) ) *100 ; % x12 error

x12 in = result(k,3);

x11 in = result(k,2);
fprintf (' %.2f $.4f %.4f $.4f .A4f  %.4f %$0.4f\n’',
T, x11 data(k), result(k,2), err(k,1), x12 data(k), result(k,3), err(k,2))

o\

end

o A It \n")
time = toc;

meanerr (1) = mean(err(:,1));

meanerr (2) = mean(err(:,2));

toterr = mean (meanerr) ;

o\

fprintf (' x11 error
fprintf (' x12 error
fprintf (' overall error
fprintf (' elapsed time

.4f\n', meanerr (1))
.4f\n', meanerr(2))
.4f\n', toterr)

.4f seconds\n', time)

o oo

~ N J

oe

end

< HEXANE/SULFOLANE > w/ parameters from literature

Exp NRTL Exp NRTL
T/K x11 x11 err (%) x12 x12 err (%)
300.30 0.9999 0.9997 0.0200 0.0092 0.0122 32.6087
307.43 0.9995 0.9996 0.0070 0.0150 0.0140 6.6000
323.51 0.9987 0.9991 0.0360 0.0203 0.0186 8.1281
348.72 0.9966 0.9971 0.0532 0.0276 0.0279 1.0507
363.36 0.9918 0.9948 0.2984 0.0332 0.0349 5.1205
372.41 0.9893 0.9925 0.3235 0.0432 0.0401 7.1065
377.72 0.9849 0.9908 0.5970 0.0469 0.0436 7.0362



384.43 0.9842 0.9881 0.3932 0.0520 0.0485 6.7115
393.92 0.9788 0.9829 0.4230 0.0584 0.0567 2.9281
403.51 0.9756 0.9756 0.0021 0.0698 0.0668 4.2550
412.29 0.9706 0.9663 0.4441 0.0794 0.0784 1.3098
422.92 0.9681 0.9501 1.8614 0.0980 0.0963 1.7143
429.93 0.9608 0.9352 2.0644 0.1161 0.1115 3.9621
x11 error 0.5479
x12 error 6.8101
overall error 3.6790
elapsed time 3.7119 seconds
< HEXANE/SULFOLANE > w/ parameters optimized
Exp NRTL Exp NRTL
T/K x11 x11 err (%) x12 x12 err (%)
300.30 0.9999 0.9999 0.0050 0.0092 0.0103 11.5217
307.43 0.9995 0.9997 0.0190 0.0150 0.0131 12.6000
323.51 0.9987 0.9988 0.0120 0.0203 0.0197 3.1527
348.72 0.9966 0.9951 0.1535 0.0276 0.0302 9.3116
363.36 0.9918 0.9914 0.0393 0.0332 0.0370 11.3253
372.41 0.9893 0.9887 0.0586 0.0432 0.0418 3.3565
377.72 0.9849 0.9870 0.2142 0.0469 0.0449 4.2857
384.43 0.9842 0.9847 0.0508 0.0520 0.0493 5.0962
393.92 0.9788 0.9811 0.2380 0.0584 0.0570 2.4658
403.51 0.9756 0.9770 0.1404 0.0698 0.0669 4.0974
412.29 0.9706 0.9724 0.1824 0.0794 0.0792 0.2519
422.92 0.9681 0.9650 0.3181 0.0980 0.1004 2.4286
429.93 0.9608 0.9583 0.2571 0.1161 0.1203 3.6090
x11 error 0.1299
x12 error 5.6540
overall error 2.8920
elapsed time 2.1997 seconds
Function
function [x12 cal, x11 cal, taul2, tau2l, minOF2] = NRTL(x12 in,x11 in,parameters, T)
alpha = 0.3;
al2 = parameters(l);
bl2 = parameters(2);
cl2 = parameters(3);
dl2 = parameters(4);
azl = parameters(5);
b21 = parameters(6);
c21 = parameters(7);
d21 = parameters(8);
taul2 = al2 + bl2/T + cl2*log(T) + d1l2*T;
tau2l = a2l + b21/T + c21*1log(T) + d21*T;
Gl2 = exp(-alpha*taul?2);
G21 = exp(-alpha*tau2l);
n = 10*%10"4;
x12 = zeros(n,1);
x11 = zeros(n,1l);
% OF = zeros(n/2);
stop i = 0;
stop j = 0;
for i = 1:n
x12(i) = x12 in + (i-1)/n;

for j = 1l:n
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if stop j ==1

stop j = 0;
break
end
x11(j) = x11 in - (j-1)/n;

% alpha phase (rich in 2)
x1l = x12(1);
x2 =1 - x1;

gammall = exp( x272 * ( tau2l*( G21/(x1+x2*G21) )"2 + Gl2*taul2 /
(x2+x1*G12) "2 ) );
gamma2l = exp( x172 * ( taul2*( Gl2/(x2+x1*G1l2) )"2 + G21l*tau2l /
) 8

(x14+x2*G21) "2 )

k11l x1l*gammall;
k21 = x2*gamma2l;

% beta phase (rich in 1)
x1 = x11(3);
x2 =1 - x1;

gammal2 = exp( x272 * ( tau2l*( G21/(x1+x2*G21) )"2 + Gl2*taul2 /
(x2+x1*G12) "2 ) );
gammaz22 = exp( x172 * ( taul2*( Gl2/(x2+x1*G1l2) )"2 + G21l*tau2l /
(x1+x2*G21) "2 ) );
k12 = xl*gammal2;
k22 = x2*gamma2?2;
OF (i,7J) = (k11 - k12)"2 + (k21 - k22)"2;
if §>2
if OF(i,3j) > OF(i,]J-1)
minOF (1) = OF(4i,3j-1);
min j = j-1;
stop_j = 1;
end
end
end
% fprintf ('\n%f', min(OF(i)));
if i> 2

if minOF (1) > minOF (i-1)
min = minOF (i-1);

min i = i-1;
stop i = 1;
end
end
if stop i ==
break
end
end
minOF2 = min;
x11 cal = x11(min_3Jj);
x12 cal = x12(min_1);
end
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